研究者総覧

篠田 正人SHINODA Masatoシノダ マサト

所属部署名研究院自然科学系数学領域
職名教授
Last Updated :2022/11/17

researchmap

プロフィール情報

  • 篠田, シノダ
  • 正人, マサト

学位

  • 博士(数理科学), 東京大学

研究キーワード

  • パーコレーション、相転移、フラクタル、数理ゲーム

研究分野

  • 自然科学一般, 応用数学、統計数学
  • 自然科学一般, 数学基礎

経歴

  • 2013年04月, 奈良女子大学研究院自然科学系教授
  • 2012年04月, 2013年03月, 奈良女子大学研究院自然科学系准教授
  • 2007年04月, 2012年03月, 奈良女子大学理学部准教授
  • 2003年07月, 2007年03月, 奈良女子大学理学部助教授
  • 1996年08月, 2003年06月, 奈良女子大学理学部講師
  • 1994年10月, 1996年07月, 奈良女子大学理学部助手

学歴

  • 1994年04月, 1994年09月, 東京大学, 数理科学研究科, 数理科学
  • 1992年04月, 1994年03月, 東京大学, 数理科学研究科
  • 1988年04月, 1992年03月, 東京大学, 理学部, 数学科

担当経験のある科目(授業)

  • 線型代数学I(B), 奈良女子大学
  • 微分積分学III演習, 奈良女子大学
  • 計算機演習I, 奈良女子大学
  • 線形代数学Ⅱ(B), 奈良女子大学
  • 線型代数学概論Ⅱ(A), 奈良女子大学
  • 可視化リテラシー, 奈良女子大学
  • プロジェクト演習(A), 奈良女子大学
  • 線型代数学概論IIA, 奈良女子大学
  • 確率論I, 奈良女子大学
  • プロジェクト演習, 奈良女子大学
  • 計算機特論, 奈良女子大学
  • 数理統計学, 奈良女子大学
  • 確率論II, 奈良女子大学
  • 計算機演習II, 奈良女子大学
  • 線型代数学II演習, 奈良女子大学
  • 計算機概論, 奈良女子大学
  • 数学特別演習III, 奈良女子大学
  • フラクタル解析学演習, 奈良女子大学
  • フラクタル解析学, 奈良女子大学
  • 線型代数学I, 奈良女子大学
  • 相互作用系の数学特論演習, 奈良女子大学
  • 微分積分学概論IIA, 奈良女子大学
  • 数学アラカルト, 奈良女子大学
  • 確率論, 奈良女子大学
  • 相互作用系の数学特論, 奈良女子大学
  • 微分積分学概論IA, 奈良女子大学
  • 数理統計学I, 奈良女子大学

所属学協会

  • 日本数学会
  • 情報処理学会

Ⅱ.研究活動実績

論文

  • 査読あり, 英語, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Crowdsourcing Mechanism Design, Yuko Sakurai; Masafumi Matsuda; Masato Shinoda; Satoshi Oyama, Crowdsourcing is becoming increasingly popular in various tasks. Although the cost incurred by workers in crowdsourcing is lower than that by experts, the possibility of errors in the former generally exceeds that of the latter. One of the important approaches to quality control of crowdsourcing is based on mechanism design, which has been used to design a game’s rules/protocols so that agents have incentives to truthfully declare their preferences, and designers can select socially advantageous outcomes. Thus far, mechanism design has been conducted by professional economists or computer scientists. However, it is difficult to recruit professional mechanism designers, and developed mechanisms tend to be difficult for people to understand. Crowdsourcing requesters have to determine how to assign tasks to workers and how to reward them. Therefore, a requester can be considered to be an “amateur mechanism designer”. This paper introduces the “wisdom of the crowd” approach to mechanism design, i.e., using crowdsourcing to explore the large design space of incentive mechanisms. We conducted experiments to show that crowd mechanism designers can develop sufficiently diverse candidates for incentive mechanisms and they can choose appropriate mechanisms given a set of candidate mechanisms. We also studied how the designers’ theoretical, economic, and social tendencies, as well as their views on the world, justifiably affect the mechanisms they propose., 2017年, 10621, 495, 503, 研究論文(国際会議プロシーディングス)
  • 査読あり, その他, Proceedings of the Third AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2015, November 8-11, 2015, San Diego, California., AAAI Press, Flexible Reward Plans to Elicit Truthful Predictions in Crowdsourcing., Yuko Sakurai; Satoshi Oyama; Masato Shinoda; Makoto Yokoo, 2015年, 28, 29
  • 査読あり, 英語, PRIMA 2015: PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS, Flexible Reward Plans for Crowdsourced Tasks, Yuko Sakurai; Masato Shinoda; Satoshi Oyama; Makoto Yokoo, We develop flexible reward plans to elicit truthful predictive probability distribution over a set of uncertain events from workers. In general, strictly proper scoring rules for categorical events only reward a worker for an event that actually occurred. However, different incorrect predictions vary in quality, and the principal would like to assign different rewards to them, according to her subjective similarity among events; e.g. a prediction of overcast is closer to sunny than rainy. We propose concrete methods so that the principal can assign rewards for incorrect predictions according to her similarity between events. We focus on two representative examples of strictly proper scoring rules: spherical and quadratic, where a worker's expected utility is represented as the inner product of her truthful predictive probability and her declared probability. In this paper, we generalize the inner product by introducing a reward matrix that defines a reward for each prediction-outcome pair. We first show that if the reward matrix is symmetric and positive definite, both the spherical and quadratic proper scoring rules guarantee the maximization of a worker's expected utility when she truthfully declares her prediction. We next compare our rules with the original spherical/quadratic proper scoring rules in terms of the variance of rewards obtained by workers. Finally, we show our experimental results using Amazon Mechanical Turk., 2015年, 9387, 400, 415, 研究論文(国際会議プロシーディングス)
  • 査読あり, 日本語, 知能と情報(日本知能情報ファジィ学会誌), 人間側から見るコンピュータ将棋の強さ, 篠田正人, 2014年11月, 26, 5, 204-211
  • 査読あり, 英語, ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, Uniform spanning trees on Sierpinski graphs, Masato Shinoda; Elmar Teufl; Stephan Wagner, We study spanning trees on Sierpinski graphs (i.e., finite approximations to the Sierpinski gasket) that are chosen uniformly at random. We construct a joint probability space for uniform spanning trees on every finite Sierpinski graph and show that this construction gives rise to a multi-type Galton-Watson tree. We derive a number of structural results, for instance on the degree distribution. The connection between uniform spanning trees and loop-erased random walk is then exploited to prove convergence of the latter to a continuous stochastic process. Some geometric properties of this limit process, such as the Hausdorff dimension, are investigated as well. The method is also applicable to other self-similar graphs with a sufficient degree of symmetry., 2014年, 11, 2, 737, 780, 研究論文(学術雑誌)
  • 査読あり, 英語, Proceedings of the Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS2013), Quality-Control Mechanism utilizing Worker's Confidence for Crowdsourced Tasks, 篠田正人; 櫻井祐子; 沖本天太; 岡雅晃; 兵頭明彦; 横尾真, 2013年, 1347-1348
  • 査読あり, 英語, Proceedings of Conference on Human Computation & Croudsourcing, Ability Grouping of Crowd Workers via Reward Discrimination, 篠田正人; Sakurai Y; Yokoo, M, 2013年
  • 査読あり, 日本語, 合同エージェントワークショップ&シンポジウム2012, クラウドソーシングにおける品質コントロールの一考察, 篠田正人; 櫻井祐子; 横尾真他, 2012年10月
  • 査読あり, 日本語, 情報処理学会論文誌ジャーナル, 3*N AB gameの最適戦略, 篠田正人, 2012年06月, 53, 6, 1-6
  • 査読あり, 日本語, IPSJ Symposium Series Vol.2008, Winning strategy of the memory game, 篠田正人, 2008年11月, 2008, 11, 181-188, 188
  • 査読あり, 英語, PROBABILITY THEORY AND RELATED FIELDS, Non-existence of phase transition of oriented percolation on Sierpinski carpet lattices, M Shinoda, A percolation problem on Sierpinski carpet lattices is considered. It is obtained that the critical probability of oriented percolation is equal to 1. In contrast it was already shown that the critical probability p(c) of percolation is strictly less than 1 in Kumagai [9]. This result shows a difference between fractal-like lattice and Z(d) lattice., 2003年03月, 125, 3, 447, 456, 研究論文(学術雑誌)
  • 査読あり, 英語, JOURNAL OF APPLIED PROBABILITY, Existence of phase transition of percolation on Sierpnski carpet lattices, M Shinoda, We study Bernoulli bond percolation on Sierpinski carpet lattices, which is a class of graphs corresponding to generalized Sierpinski carpets. In this paper we give a sufficient condition for the existence of a phase transition on the lattices. The proof is suitable for graphs which have self-similarity. We also discuss the relation between the existence of a phase transition and the isoperimetric dimension., 2002年03月, 39, 1, 1, 10, 研究論文(学術雑誌)
  • 査読あり, 英語, Transactions of the Materials Research Society of Japan, Lower estimate for the critical line of contact processes, Masato SHINODA, 2001年, 26, 1, 389, 392
  • 査読あり, 英語, Osaka Journal of Mathematics, Percolation on the pre-Sierpinski gasket, Masato SHINODA, 1996年, 33, 2, 533, 554, 研究論文(学術雑誌)
  • 査読あり, その他, ゲームプログラミングワークショップ2022論文集, 報酬と失敗コストを導入した数当てゲーム, 吉岡 陸; 櫻井 祐子; 小山 聡; 篠田 正人, 2022年11月, 2022, 25, 28
  • 査読あり, 日本語, ゲームプログラミングワークショップ2022論文集, 分割削除ニムの勝敗判定, 安福 智明; 坂井 公; 篠田 正人; 末續 鴻輝, 2022年11月, 2022, 17, 24
  • 査読あり, その他, PRIMA 2022: Principles and Practice of Multi-Agent Systems, Sample Complexity of Learning Multi-value Opinions in Social Networks, Masato Shinoda; Yuko Sakurai; Satoshi Oyama, 2023年, 192, 207, 論文集(書籍)内論文

MISC

  • 査読無し, 日本語, 教育システム研究(奈良女子大学教育システム研究開発センター), 奈良女子大学教育システム研究開発センター, 求積法の変遷を探る学習-高等学校数学科授業の多角的観点からの検討-, 篠田正人; 佐藤大典; 梅垣由美子; 比連崎悟, 2017年10月, 別冊, 0, 95-100, 100
  • 査読無し, 日本語, 情報処理学会研究報告ゲーム情報学, A Cat-and-Mouse game on the set of integers, 篠田正人; 杉山悦子, 2017年07月
  • 査読無し, 日本語, 第27回人工知能学会全国大会, 人工知能学会, クラウドソーシングにおける必要ワーカ数の動的決定方法の提案, 篠田正人; 岡雅晃; 沖本天太; 櫻井祐子; 横尾真, 2013年, 27, 1, 3
  • 査読無し, 日本語, 第27回人工知能学会全国大会, 人工知能学会, クラウドソーシングでのタスク品質改善のための価格設定の検討, 篠田正人; 岡雅晃; 沖本天太; 櫻井祐子; 横尾真, 2013年, 27, 1, 3
  • 査読無し, 英語, COE Lecture Note Series (Institute of Mathematics for Industry, Kyushu University), Existence of phase transition of percolation on Sierpinski carpet lattices, 篠田正人, 2012年03月, 39, 12-21
  • 査読無し, 日本語, 情報処理学会研究報告 GI-24, 特別なカードを含む神経衰弱ゲームの勝率最大化戦略, 篠田正人; 坂元香菜美, 2010年06月
  • 査読無し, 日本語, 研究報告ゲーム情報学(GI), Delete Nimの一般化と勝敗判定, 篠田正人, 2022年03月, 2022-GI-47, 5, 1, 8, 機関テクニカルレポート,技術報告書,プレプリント等
  • 日本語, 情報処理学会研究報告, 拡張削除ニム, 安福智明; 坂井公; 篠田正人; 末續鴻輝, 2022年07月, 2022-GI-48, 14, 1, 5
  • 日本語, 第36回人工知能学会全国大会, ソーシャルネットワーク上での意見傾向推定のために必要なサンプル数の評価, 篠田 正人; 櫻井 祐子; 小山 聡, 2022年06月

書籍等出版物

  • 人間に勝つコンピュータ将棋の作り方, 技術評論社, 篠田正人; 滝澤武信, 分担, 2012年09月, 日本語, 査読無し, その他, 9784774153261
  • 確率論ハンドブック, 丸善出版, 篠田正人, 分担, 2012年07月, 439-442, 日本語, 査読無し, その他, 9784621065174
  • 確率論・統計学入門, 共立出版, 篠田正人; 岡部恭幸; 末次武明, 筆頭著者, 2008年03月, 日本語, 査読無し, その他
  • Percolation on fractal lattices ; Asymptotic behavior of the correlation length, Advances in Nonlinear Partial Differential Equations and Stochastics, World Scientific, 篠田正人, 1998年, 331-351頁, 英語, 査読無し, その他
  • Mathematical Models, STRAIGHT, Masato SHINODA, 2022年04月, その他, その他

講演・口頭発表等

  • 篠田 正人, 国内, 第4回日本組合せゲーム理論研究集会, 数当てゲームの最適戦略, 口頭発表(一般), 2020年08月, 日本語
  • Masato SHINODA, ベトナム自然科学大学, フラクタル格子上のパーコレーション相転移, 口頭発表(一般), 2019年10月, その他
  • 篠田 正人, 研究集会「確率解析の諸相」, Pre-Sierpinski gasket上のpercolation再訪, 2018年01月, 日本語, 国内会議
  • 杉山悦子; 篠田正人, 情報処理学会ゲーム情報学研究会, A Cat-and Mouse game on the set of integers, 2017年07月, 日本語, 倉敷市芸文館, 国内会議
  • 篠田正人, 奈良女子大学人間文化研究科2015年度数学と物理学と情報科学の研究交流シンポジウム, 強いコンピュータ将棋を作るための数学, 2015年12月, 日本語, 奈良女子大学, 国内会議
  • 篠田正人, 新潟確率論ワークショップ, 数当てゲームの最適戦略, 2013年12月, 日本語, 新潟大学南キャンパス「ときめいと」, 国内会議
  • 篠田正人, 12th workshop on Stochastic Analysis on Large Scale Interacting Systems, Random spanning trees on Sierpinski gasket graphs, 2013年11月, 英語, Tokyo University, 国際会議
  • 篠田正人, 日本数学会2013年度秋季総合分科会応用数学分科会, 強いコンピュータ将棋の作り方, 2013年09月, 日本語, 愛媛大学, 国内会議
  • 篠田正人, 情報処理学会第74回全国大会, コンピュータ将棋の不思議, 2012年03月, 日本語, 名古屋工業大学
  • 篠田正人, 新潟確率論ワークショップ, Winning strategy of the memory game, 2012年01月, 日本語, 新潟大学, 国内会議
  • 篠田正人, Multiscale Mathematics: Hierarchy of Collective Phenomena and Interrelations between Hierarchical Structures, Existence of phase transition of percolation on fractal lattices, 2011年12月, 英語, Institute of Mathematics for Industry, Kyushu University
  • 篠田正人, フラクタルの数学的諸相, pre-Sierpinski gasketでのminimal spanning treeとpercolation, 2011年02月, 日本語, 国内会議
  • 篠田正人, 確率論とその周辺, Random spanning trees on the Sierpinski gasket, 2010年12月, 日本語, 京都大学数理解析研究所, 国内会議
  • 篠田正人, 34th Conference on Stochastic Processes and Their Applications, Random spanning trees on the Sierpinski gasket, 2010年09月, 英語, Senri Life Science Center Building, 国内会議
  • 篠田 正人, 日本数学会, Uniform spanning trees and loop-erased random walks on the pre-Sierpinski gasket, 2009年09月, 日本語, 国内会議
  • 篠田 正人, 国内, 情報処理学会第47回ゲーム情報学研究発表会, Delete Nimの一般化と勝敗判定, 口頭発表(一般), 2022年03月18日, 2022年03月18日, 2022年03月19日, 日本語, rm:research_project_id

共同研究・競争的資金等の研究課題

  • 基盤研究(C), 2021年04月01日, 2025年03月31日, 21K12191, 数理ゲームを題材とする確率的最適化の研究および機械学習の有効性判定への活用, 篠田 正人; 嶽村 智子, 日本学術振興会, 科学研究費助成事業 基盤研究(C), 奈良女子大学, 3380000, 2600000, 780000, rm:misc;rm:presentations
  • 基盤研究(B), 2018年04月01日, 2023年03月31日, 18H03299, 自己組織化クラウドソーシングのためのメカニズム設計, 櫻井 祐子; 横尾 真; 篠田 正人; 松田 昌史, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 国立研究開発法人産業技術総合研究所, 14950000, 11500000, 3450000, 本研研究課題の目的は,インターネット上において,多数の人々が自律的に協力することで個人では実行不可能な大規模かつ複雑な作業を効率的に行うためのメカニズム設計技術を確立することである.クラウドソーシングは不特定多数の人々に作業を委託する仕組みであるが,品質制御やセキュリティなど技術的課題が未だ多く,個人もしくは少人数でのチーム作業に留まっている.そこで,本研究では,匿名環境下での大規模な組織化の基盤技術として,マルチエージェントシステムのメカニズム設計技術を基に,参加者らが自律的に協力し良い作業品質を導く,自己組織化クラウドソーシングという新たな基盤を構築する.本年度は,安定な組織形成のためのチーム編成技術に関して重点的に研究を行った.特に,ワーカのチーム編成において,ワーカの関係が簡潔に記述されている場合のチーム編成問題,チームの能力が他のチーム編成に影響される場合のチーム編成問題,新たなワーカの参入がチーム編成の安定性に与える影響の分析,ワーカが突然不参加となる場合を考慮したチーム編成に対する安定性の新たな頑健性の提案を行った.これらの研究に関して,マルチエージェントシステムの国際論文誌JAAMAS,制約充足関連の国際論文誌Constraintsに論文掲載,人工知能の難関国際会議AAAI2019に採択などの成果を得ることができた.
  • 基盤研究(A), 2012年04月01日, 2016年03月31日, 24244010, 2次元クーロンポテンシャルによって相互作用する無限粒子系の確率幾何と確率力学, 長田 博文; 種村 秀紀; 舟木 直久; 白井 朋之; 熊谷 隆; 小谷 眞一; 香取 真理; 篠田 正人; 乙部 厳己, 日本学術振興会, 科学研究費助成事業 基盤研究(A), 九州大学, 28470000, 21900000, 6570000, 統計物理に典型的に現れるような、対称性を持つ無限次元確率微分方程式を解く一般論を構築した。特に、解のパスワイズ一意性や強解の存在を、非常に一般的な枠組みで証明した。これは、新規な方法であり、配置空間の末尾事象をあたかも、無限次元確率微分方程式の境界条件のように見做し、それが平衡分布に関して自明であることが強解の存在を意味することを示した。無限次元確率微分方程式に対して、末尾事象が自明である状況の下で、確率1となる集合が一意であるとき、パスワイズ一意性が成り立つことを証明した。 この結果は、ランダム行列理論に現れる対数関数を干渉ポテンシャルとしてもつ無限次元確率微分方程式にも有効である。, url
  • 若手研究(B), 2009年, 2011年, 21740075, 確率モデルによる、フラクタルの新たな分類を目指して, 篠田 正人, 日本学術振興会, 科学研究費助成事業 若手研究(B), 奈良女子大学, 2470000, 1900000, 570000, フラクタルグラフにおける浸透過程およびランダムな全域木モデルを構成しその性質を調べた。特に重要な性質として、ランダムな一様全域木モデルと最小全域木モデルではその極限過程において臨界指数が異なることを示した。, url
  • 基盤研究(B), 2009年, 2011年, 21340031, ランダム行列、統計物理に動機づけられた無限次元確率力学系, 長田 博文; 舟木 直久; 種村 秀紀; 白井 朋之; 香取 真理; 乙部 厳己; 篠田 正人; 矢野 裕子; 矢野 孝次, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 九州大学, 16640000, 12800000, 3840000, 本研究では、2次元クーロンポテンシャルに対しても適用可能な,干渉ブラウン運動の構成に関する一般的構成定理とSDE表現定理を確立した.その結果をGinibre点過程, Dyson点過程, Bessel点過程というランダム行列に関する代表的な測度に対して適用し,無限次元確率力学系を記述する確率微分方程式を求めて,解いた. Ginibre点過程のPalm測度の特異性を研究し,通常のGibbs測度と異なる興味深い結果を得た.更に、2次元ヤング図形の時間発展モデルを構成し,そのスケール極限を求めた。, url
  • 基盤研究(C), 2007年, 2009年, 19540129, 条件付確率過程の分布に境界の状態が与える影響の解明, 富崎 松代; 篠田 正人; 飯塚 勝, 日本学術振興会, 科学研究費助成事業 基盤研究(C), 奈良女子大学, 4420000, 3400000, 1020000, 調和変換の手法は、グリーン核や拡散過程を取り扱う分野において用いられ、その性質の解明に活用されている。この場合、グリーン核や拡散過程は「最小」のものに限られている。しかし、集団遺伝学のような応用分野においては、必ずしも「最小」の確率過程を取り扱う訳ではない。本研究課題では、「最小」ではない広義拡散過程の条件付分布の問題と、標本路の境界での挙動がその条件付分布に与える影響について考察した。, url
  • 基盤研究(A), 2005年, 2008年, 17204011, 統計力学に動機付けをもつ諸問題の確率解析による総合的かつ統合的研究, 長田 博文; 舟木 直久; 篠田 正人; 熊谷 隆; 白井 朋之; 原 隆; 深井 康成; 内山 耕平; 松本 裕行; 種村 秀紀; 永幡 幸生; 樋口 保成; 三苫 至; 杉浦 誠; 今野 紀雄; 籠屋 恵嗣; 乙部 厳己; 吉田 伸生; 梁 松; 半田 賢司, 日本学術振興会, 科学研究費助成事業 基盤研究(A), 九州大学, 26910000, 20700000, 6210000, 統計力学は、膨大な自由度-数学的には無限自由度-をもつ系を研究対象とする。この研究では、統計力学に動機づけられた諸問題を、とくに無限次元確率力学系を中心として、確率解析の手法で統一的に研究し、確率場、相互作用粒子系、極限定理に関係する様々な結果を得た。さらに、これらの研究を契機として、Bessel確率積分やフラクタル構造領域の劣ガウス型熱核の評価など、確率解析の理論を発展させた。, url
  • 若手研究(B), 2004年, 2006年, 16740054, フラクタルグラフでのパーコレーション相転移現象の研究, 篠田 正人, 日本学術振興会, 科学研究費助成事業 若手研究(B), 奈良女子大学, 3100000, 3100000, 平成18年度は、当初計画通りに「フラクタルグラフでの研究の成果と通常のd次元格子モデルとの関係」について研究を進め、その2つのモデルの「橋渡し」と考えられるシェルピンスキガスケットフラクタルと1次元格子の直積グラフにおけるパーコレーション問題を中心に考察をおこなった。このシェルピンスキガスケットとは「有限分離性」を持つ、直観的には「細いボトルネック構造を持つ」グラフであり、統計力学の確率モデルにおいてこの細い部分の影響がどれほど現れるか、というものである。その成果として、単純なフラクタル格子で現れている「ボトルネックの顕著な影響」はここで考察している新たなグラフでは「ある程度緩和」され、フラクタルの性質をある程度保持しつつ平行移動不変格子(非フラクタル)のよい性質も持つことが現在までにわかりつつある。具体的に言えば、最初の問題として「無限連結成分がボトルネックで分離されてバラバラの状態で存在するか、大きな塊の状態で存在するか」があるが、このグラフではパーコレーションの無限連結成分は唯一であり、パラメータに関して2相にしか持たない(中間相がない)、ということがわかった。こうした性質が・他のフラクタル直積グラフでも成り立つかどうか、・他の統計力学モデルでも成り立つかどうか、は(ある程度の予想はできるが)さらに研究を進める必要がある。なお、この研究における論文は現在準備中であり、19年3月の日本数学会統計数学分科会で講演を行い(演題:The number of infinite percolation clusters on some graph products)、19年度に入っていくつかの研究集会でも発表予定である。
  • 基盤研究(B), 1999年, 2002年, 11440029, Dirichlet形式,等周不等式を用いた多次元拡散過程の新しい構成方法, 長田 博文; 梁 松; 石毛 和弘; 服部 哲弥; 植村 英明; 篠田 正人; 千代延 大造; 市原 完治, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 名古屋大学, 12900000, 12900000, 本研究は研究代表者が開発したDirichlet形式を用いた拡散過程のある構成法をSierpinskiカーペットを代表とする無限分岐的フラクタル、さらに無限粒子系の空間やパス空間といった無限次元空間など興味深いが通常の方法ではその上に拡散過程を構成しにくい空間に拡散過程を構成しその性質を調べることを目的とした。研究の発端となったフラクタルの場合にはハウスドルフ測度に対する特異時間変更でパスの連続性が保たれることを証明し、結果としてブラウン運動とは異なるがハウスドルフ測度を不変測度とする自己相似拡散過程をフラクタルの上に構成することができた。ランダムフラクタルについては「バブル」と呼んでいる自然な統計的自己相似性を持つフラクタル集合を考え出し、上に述べた拡散過程の構成方法の一般論の部分から、この上に拡散過程を構成した。これが如何によい性質を持っているかを突き詰めていくのは今後の課題となった。また、フラクタルの上のパーコレーションについていくつかの新しい知見が得られた。無限粒子系の空間に関しては、定常測度が「determinantal random point field」と呼ばれるランダム行列の理論と関係が深い確率測度のクラスに対して、あるレベルでで拡散過程の構成を行うことができた。このクラスは従来のRuelleクラスのGibbs測度とはまた違った範疇のもので今後研究が進展していくと思われる。パス空間の場合にはその上のGibbs測度の存在およびそれを定常状態とする拡散過程の構成を行った。Gibbs測度の混合性についてもいくつかの知見を得た。だが、この無限次元拡散過程の興味深い性質の探求は今後の課題である。
  • 基盤研究(B), 1998年, 2000年, 10440029, フラクタル上の解析学の展開, 日野 正訓; 高橋 陽一郎; 木上 淳; 熊谷 隆; 篠田 正人; 松本 裕行; 杉浦 誠, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 京都大学, 7800000, 7800000, 本研究を通じて、フラクタル上の解析学について以下の成果を得ることができた。 1.フラクタル上の自己共役作用素のスペクトル 自己相似測度をベースとする拡散過程において、測度の自己相似性と拡散過程のスケールがマッチしない際の熱核の短時間漸近挙動を研究した。この場合の漸近挙動は初期点に大きく依存してマルチフラクタルが現れることが分かり、その(ユークリッド距離等に関する)ハウスドルフ次元を計算した。この結果は雑誌に掲載予定である。さらに、フラクタル上に擬距離の族を定め、ある特別な擬距離については上述した次元が単純な形で表現できることを示した。この結果は現在論文に纏めている。 2.ランダムフラクタル上の確率過程の解析 (1)Homogeneous random Sierpinski carpet上の拡散過程とその熱核の評価に関する研究をまとめ、雑誌に掲載された。 (2)空間的な対称性のないrandom recursive Sierpinski gasket上の拡散過程の熱核の短時間漸近挙動を調べ、この挙動に重複対数分の振動が現われることを証明した。この結果は雑誌に掲載された。 3.フラクタル上の確率解析 (1)ユークリッド空間内にフラクタルなどの複雑な系が埋め込まれたモデルにおける熱伝導問題を扱い、実解析で用いられるベソフ空間の理論を援用することにより、内部では系特有の拡散、外部ではユークリッド空間の拡散に従うような拡散過程を解析的に構成した。この結果は雑誌に掲載され、現在は拡散過程の短時間挙動の大偏差原理を研究中である。 (2)T.Lyons氏らによる「ラフパスを持つ確率過程上の確率解析の研究」の発展については、新たな成果を得られなかった。離散近似を手がかりに、彼らの与えた確率微分方程式の性質を詳しく探ることは今後の大きなテーマの一つである。

Ⅲ.社会連携活動実績

1.公的団体の委員等(審議会、国家試験委員、他大学評価委員,科研費審査委員等)

  • 学協会
  • 情報処理学会, ゲーム情報学研究会運営委員, 学協会
  • 学協会
  • 日本数学会, 代議員, 学協会
  • 学協会
  • 情報処理学会, ゲーム情報学研究運営委員会幹事, 学協会
  • 学協会
  • 日本数学会, 評議員, 学協会


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.