研究者総覧

張 娟姫 (ジャン ヨンヒ)

  • 研究院自然科学系数学領域 准教授
Last Updated :2021/10/20

researchmap

学位

  • 修士(理学), 大阪大学
  • 博士(理学), 広島大学

研究キーワード

  • 3次元多様体論 結び目理論 3-dimensional manifolds Knot Theory 

研究分野

  • 自然科学一般, 幾何学

経歴

  • 2019年01月 奈良女子大学 研究院自然科学系数学領域 准教授
  • 2013年04月 - 2018年12月 奈良女子大学 研究院自然科学系数学領域 助教
  • 2012年 - 2013年 日本学術振興会外国人特別研究員
  • 2012年 - 2013年 :JSPS Foreign Research Fellow
  • 2013年 -:Nara Women's University, Assistant Professor
  • 2010年 - 2012年 日本学術振興会特別研究員
  • 2010年 - 2012年 :JSPS Research Fellow

学歴

  • 2008年04月- 2011年03月 広島大学 理学研究科 数学専攻 日本国
  • - 2011年 広島大学 Graduate School of Sciences Department of Mathematics
  • 2006年04月- 2008年03月 大阪大学 理学研究科 数学専攻 日本国
  • - 2008年 大阪大学 Graduate School of Sciences Department of Mathematics
  • 2000年03月- 2004年08月 全北大学校 師範大学 数学教育学科 大韓民国
  • - 2004年 Chonbuk National University College of Education Department of Mathematics Education 大韓民国

論文

  • On keen Heegaard splittings

    Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi

    2018年10月, Adv. Stud. Pure Math., 78, 293 - 311

  • Meridional rank and bridge number for a class of links

    Michel Boileau; Yeonhee Jang; Richard Weidmann

    We prove that links with meridional rank 3 whose 2-fold branched covers are graph manifolds are 3-bridge links. This gives a partial answer to a question by S. Cappell and J. Shaneson on the relation between the bridge numbers and meridional ranks of links. To prove this result, we also show that the meridional rank of any satellite knot is at least 4., 2018年, Pacific Journal of Mathematics, 292 (1), 61 - 80, doi

    研究論文(学術雑誌)

  • Meridional rank of knots whose exterior is a graph manifold

    Michel Boileau; Ederson Dutra; Yeonhee Jang; Richard Weidmann

    We prove for a large class of knots that the meridional rank coincides with the bridge number. This class contains all knots whose exterior is a graph manifold. This gives a partial answer to a question of S. Cappell and J. Shaneson [10, pb 1.11]. (C) 2017 Elsevier B.V. All rights reserved., 2017年09月, TOPOLOGY AND ITS APPLICATIONS, 228, 458 - 485, doi;web_of_science

    研究論文(学術雑誌)

  • A knot with destabilized bridge spheres of arbitrarily high bridge number

    Yeonhee Jang; Tsuyoshi Kobayashi; Makoto Ozawa; Kazuto Takao

    We show that there exists an infinite family of knots, each of which has, for each integer k >= 0, a destabilized (2k + 5)-bridge sphere. We also show that, for each integer n >= 4, there exists a knot with a destabilized 3-bridge sphere and a destabilized n-bridge sphere., 2016年04月, JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 93 (2), 379 - 396, doi;web_of_science

    研究論文(学術雑誌)

  • Bridge splittings of links with distance exactly n

    Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi

    We show that, for any integers n >= 2, g >= 0 and b >= 1 except for (g, b) = (0,1) and (0, 2), there exists a (g, b)-bridge splitting of a link in some manifold with distance exactly n. (C) 2015 Elsevier B.V. All rights reserved., 2015年12月, TOPOLOGY AND ITS APPLICATIONS, 196, 608 - 617, doi;web_of_science

    研究論文(学術雑誌)

  • Distance of bridge surfaces for links with essential meridional spheres

    Yeonhee Jang

    Bachman and Schleimer gave an upper bound for the distance of a bridge surface of a knot in a 3-manifold which admits an essential surface in the exterior. Here we give a sharper upper bound for the distance of a bridge surface of a link when the manifold admits an essential meridional sphere in the exterior., 2014年01月, PACIFIC JOURNAL OF MATHEMATICS, 267 (1), 121 - 130, doi;web_of_science

    研究論文(学術雑誌)

  • Heegaard splittings of distance exactly n

    Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi

    In this paper, we show that, for any integers n >= 2 and g >= 2, there exist genus-g Heegaard splittings of compact 3-manifolds with distance exactly n., 2014年, ALGEBRAIC AND GEOMETRIC TOPOLOGY, 14 (3), 1395 - 1411, doi;web_of_science

    研究論文(学術雑誌)

  • Classification of 3-bridge spheres of 3-bridge arborescent links

    Yeonhee Jang

    In this paper, we give an isotopy classification of 3-bridge spheres of 3-bridge arborescent links, which are not Montesinos links. To this end, we prove a certain refinement of a theorem of J. S. Birman and H. M. Hilden [3] on the relation between bridge presentations of links and Heegaard splittings of 3-manifolds. In the proof of this result, we also give an answer to a question by K. Morimoto [23] on the classification of genus-2 Heegaard splittings of certain graph manifolds. © 2013 The Mathematical Society of Japan., 2013年, Journal of the Mathematical Society of Japan, 65 (1), 97 - 136, doi

    研究論文(学術雑誌)

  • A G-family of quandles and handlebody-knots

    Atsushi Ishii; Masahide Iwakiri; Yeonhee Jang; Kanako Oshiro

    2013年, Illinois Journal of Mathematics, 57 (3), 817 - 838

  • Symmetric quandle colorings for spatial graphs and handlebody-links

    Yeonhee Jang; Kanako Oshiro

    In this paper, colorings by symmetric quandles for spatial graphs and handlebody-links are introduced. We also introduce colorings by LH-quandles for LH-links. LH-links are handlebody-links, some of whose circle components are specified, which are related to Heegaard splittings of link exteriors. We also discuss quandle (co)homology groups and cocycle invariants., 2012年04月, JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 21 (4), doi;web_of_science

    研究論文(学術雑誌)

  • Characterization of 3-bridge links with infinitely many 3-bridge spheres

    Yeonhee Jang

    In an earlier paper, the author constructed an infinite family of 3-bridge links each of which admits infinitely many 3-bridge spheres up to isotopy. In this paper, we prove that if a prime, unsplittable link L in S-3 admits infinitely many 3-bridge spheres up to isotopy then L belongs to the family. (C) 2011 Elsevier B.V. All rights reserved., 2012年03月, TOPOLOGY AND ITS APPLICATIONS, 159 (4), 1132 - 1145, doi;web_of_science

    研究論文(学術雑誌)

  • Classification of 3-bridge arborescent links

    Yeonhee Jang

    In this paper, we give a complete classification of 3-bridge arborescent links., 2011年03月, HIROSHIMA MATHEMATICAL JOURNAL, 41 (1), 89 - 136, web_of_science

    研究論文(学術雑誌)

  • Three-bridge links with infinitely many three-bridge spheres

    Yeonhee Jang

    we construct infinitely many three-bridge links each of which admits infinitely many three-bridge spheres up to isotopy. (C) 2009 Elsevier B.V. All rights reserved., 2010年01月, TOPOLOGY AND ITS APPLICATIONS, 157 (1), 165 - 172, doi;web_of_science

    研究論文(学術雑誌)

  • On 2-twist-spun spherical Montesinos knots

    Yeonhee Jang; Misaki Kataoka; Rika Miyakoshi

    2020年12月, Journal of Knot Theory and Its Ramifications, 29 (14)

    研究論文(学術雑誌)

  • Double branched covers of tunnel number one knots

    Yeonhee Jang; Luisa Paoluzzi

    2021年04月, Geometriae Dedicata, 211 (1), 129 - 143

    研究論文(学術雑誌)

MISC

  • Extending geodesics in the curve complex

    張 娟姫; Ayako Ido; Tsuyoshi Kobayashi

    2013年, RIMS kokyuroku, 1836, 1 - 6

  • (1,1)-bridge splitting with distance exactly n

    張 娟姫; Ayako Ido; Tsuyoshi Kobayashi

    2013年, RIMS kokyuroku, 1868, 32 - 37

講演・口頭発表等

  • Bridge splittings of links as viewed from the curve complex

    Women in Mathematics - a Panorama of Contributions, 2017年

  • Knots with non-minimal dstabilized bridge spheres

    The 6th TAPU-KOOK Joint Seminar on Knots and Related Topics, 2014年

  • Bridge splittings of links with Hempel distance n

    A Satellite Conference of Seoul ICM 2014: Knots and Low Dimensional Manifolds, 2014年

所属学協会

  • 日本数学会



Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.