研究者総覧

張 娟姫Jang Yeonheeジャン ヨンヒ

所属部署名研究院自然科学系数学領域
職名准教授
Last Updated :2024/02/22

researchmap

プロフィール情報

  • 張, ジャン
  • 娟姫, ヨンヒ

学位

  • 修士(理学), 大阪大学
  • 博士(理学), 広島大学

研究キーワード

  • 3次元多様体論
  • 結び目理論
  • 3-dimensional manifolds
  • Knot Theory

研究分野

  • 自然科学一般, 幾何学

経歴

  • 2019年01月, 9999年, 奈良女子大学, 研究院自然科学系数学領域, 准教授
  • 2013年04月, 2018年12月, 奈良女子大学, 研究院自然科学系数学領域, 助教
  • 2012年, 2013年, 日本学術振興会外国人特別研究員
  • 2012年, 2013年, :JSPS Foreign Research Fellow
  • 2013年, -:Nara Women's University, Assistant Professor
  • 2010年, 2012年, 日本学術振興会特別研究員
  • 2010年, 2012年, :JSPS Research Fellow

学歴

  • 2008年04月, 2011年03月, 広島大学, 理学研究科, 数学専攻, 日本国
  • 2011年, 広島大学, Graduate School of Sciences, Department of Mathematics
  • 2006年04月, 2008年03月, 大阪大学, 理学研究科, 数学専攻, 日本国
  • 2008年, 大阪大学, Graduate School of Sciences, Department of Mathematics
  • 2000年03月, 2004年08月, 全北大学校, 師範大学, 数学教育学科, 大韓民国
  • 2004年, Chonbuk National University, College of Education, Department of Mathematics Education, 大韓民国

所属学協会

  • 日本数学会

Ⅱ.研究活動実績

論文

  • 査読あり, 英語, Adv. Stud. Pure Math., On keen Heegaard splittings, Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi, In this paper, we introduce a new concept of strongly keen for Heegaard splittings, and show that, for any integers n > 2 and g > 3, there exists a strongly keen Heegaard splitting of genus g whose Hempel distance is n., 2018年10月, 78, 293, 311, 研究論文(国際会議プロシーディングス)
  • 査読あり, 英語, Pacific Journal of Mathematics, Meridional rank and bridge number for a class of links, Michel Boileau; Yeonhee Jang; Richard Weidmann, We prove that links with meridional rank 3 whose 2-fold branched covers are graph manifolds are 3-bridge links. This gives a partial answer to a question by S. Cappell and J. Shaneson on the relation between the bridge numbers and meridional ranks of links. To prove this result, we also show that the meridional rank of any satellite knot is at least 4., 2018年, 292, 1, 61, 80, 研究論文(学術雑誌), 10.2140/pjm.2018.292.61
  • 査読あり, 英語, TOPOLOGY AND ITS APPLICATIONS, Meridional rank of knots whose exterior is a graph manifold, Michel Boileau; Ederson Dutra; Yeonhee Jang; Richard Weidmann, We prove for a large class of knots that the meridional rank coincides with the bridge number. This class contains all knots whose exterior is a graph manifold. This gives a partial answer to a question of S. Cappell and J. Shaneson [10, pb 1.11]. (C) 2017 Elsevier B.V. All rights reserved., 2017年09月, 228, 458, 485, 研究論文(学術雑誌), 10.1016/j.topol.2017.06.008
  • 査読あり, 英語, JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, A knot with destabilized bridge spheres of arbitrarily high bridge number, Yeonhee Jang; Tsuyoshi Kobayashi; Makoto Ozawa; Kazuto Takao, We show that there exists an infinite family of knots, each of which has, for each integer k >= 0, a destabilized (2k + 5)-bridge sphere. We also show that, for each integer n >= 4, there exists a knot with a destabilized 3-bridge sphere and a destabilized n-bridge sphere., 2016年04月, 93, 2, 379, 396, 研究論文(学術雑誌), 10.1112/jlms/jdw004
  • 査読あり, 英語, TOPOLOGY AND ITS APPLICATIONS, Bridge splittings of links with distance exactly n, Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi, We show that, for any integers n >= 2, g >= 0 and b >= 1 except for (g, b) = (0,1) and (0, 2), there exists a (g, b)-bridge splitting of a link in some manifold with distance exactly n. (C) 2015 Elsevier B.V. All rights reserved., 2015年12月, 196, 608, 617, 研究論文(学術雑誌), 10.1016/j.topol.2015.05.028
  • 査読あり, 英語, PACIFIC JOURNAL OF MATHEMATICS, Distance of bridge surfaces for links with essential meridional spheres, Yeonhee Jang, Bachman and Schleimer gave an upper bound for the distance of a bridge surface of a knot in a 3-manifold which admits an essential surface in the exterior. Here we give a sharper upper bound for the distance of a bridge surface of a link when the manifold admits an essential meridional sphere in the exterior., 2014年01月, 267, 1, 121, 130, 研究論文(学術雑誌), 10.2140/pjm.2014.267.121
  • 査読あり, 英語, ALGEBRAIC AND GEOMETRIC TOPOLOGY, Heegaard splittings of distance exactly n, Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi, In this paper, we show that, for any integers n >= 2 and g >= 2, there exist genus-g Heegaard splittings of compact 3-manifolds with distance exactly n., 2014年, 14, 3, 1395, 1411, 研究論文(学術雑誌), 10.2140/agt.2014.14.1395
  • 査読あり, 英語, Journal of the Mathematical Society of Japan, Classification of 3-bridge spheres of 3-bridge arborescent links, Yeonhee Jang, In this paper, we give an isotopy classification of 3-bridge spheres of 3-bridge arborescent links, which are not Montesinos links. To this end, we prove a certain refinement of a theorem of J. S. Birman and H. M. Hilden [3] on the relation between bridge presentations of links and Heegaard splittings of 3-manifolds. In the proof of this result, we also give an answer to a question by K. Morimoto [23] on the classification of genus-2 Heegaard splittings of certain graph manifolds. © 2013 The Mathematical Society of Japan., 2013年, 65, 1, 97, 136, 研究論文(学術雑誌), 10.2969/jmsj/06510097
  • 査読あり, その他, Illinois Journal of Mathematics, A G-family of quandles and handlebody-knots, Atsushi Ishii; Masahide Iwakiri; Yeonhee Jang; Kanako Oshiro, 2013年, 57, 3, 817, 838
  • 査読あり, 英語, JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, Symmetric quandle colorings for spatial graphs and handlebody-links, Yeonhee Jang; Kanako Oshiro, In this paper, colorings by symmetric quandles for spatial graphs and handlebody-links are introduced. We also introduce colorings by LH-quandles for LH-links. LH-links are handlebody-links, some of whose circle components are specified, which are related to Heegaard splittings of link exteriors. We also discuss quandle (co)homology groups and cocycle invariants., 2012年04月, 21, 4, 研究論文(学術雑誌), 10.1142/S0218216511010024
  • 査読あり, 英語, TOPOLOGY AND ITS APPLICATIONS, Characterization of 3-bridge links with infinitely many 3-bridge spheres, Yeonhee Jang, In an earlier paper, the author constructed an infinite family of 3-bridge links each of which admits infinitely many 3-bridge spheres up to isotopy. In this paper, we prove that if a prime, unsplittable link L in S-3 admits infinitely many 3-bridge spheres up to isotopy then L belongs to the family. (C) 2011 Elsevier B.V. All rights reserved., 2012年03月, 159, 4, 1132, 1145, 研究論文(学術雑誌), 10.1016/j.topol.2011.11.033
  • 査読あり, 英語, HIROSHIMA MATHEMATICAL JOURNAL, Classification of 3-bridge arborescent links, Yeonhee Jang, In this paper, we give a complete classification of 3-bridge arborescent links., 2011年03月, 41, 1, 89, 136, 研究論文(学術雑誌)
  • 査読あり, 英語, TOPOLOGY AND ITS APPLICATIONS, Three-bridge links with infinitely many three-bridge spheres, Yeonhee Jang, we construct infinitely many three-bridge links each of which admits infinitely many three-bridge spheres up to isotopy. (C) 2009 Elsevier B.V. All rights reserved., 2010年01月, 157, 1, 165, 172, 研究論文(学術雑誌), 10.1016/j.topol.2009.04.060
  • 査読あり, 英語, Journal of Knot Theory and Its Ramifications, On 2-twist-spun spherical Montesinos knots, Yeonhee Jang; Misaki Kataoka; Rika Miyakoshi, 2020年12月, 29, 14, 研究論文(学術雑誌)
  • 査読あり, 英語, Geometriae Dedicata, Double branched covers of tunnel number one knots, Yeonhee Jang; Luisa Paoluzzi, 2021年04月, 211, 1, 129, 143, 研究論文(学術雑誌)

MISC

  • 査読無し, その他, RIMS kokyuroku, Extending geodesics in the curve complex, 張 娟姫; Ayako Ido; Tsuyoshi Kobayashi, 2013年, 1836, 1, 6
  • 査読無し, その他, RIMS kokyuroku, (1,1)-bridge splitting with distance exactly n, 張 娟姫; Ayako Ido; Tsuyoshi Kobayashi, 2013年, 1868, 32, 37
  • 査読無し, その他, 京都大学数理解析研究所講究録, Stabilization of bridge decompositions of knots and bridge positions of knot types, Yeonhee Jang; Tsuyoshi Kobayashi; Makoto Ozawa; Takao Kazuto, 2019年, 2135, 23, 28
  • 査読無し, その他, 京都大学数理解析研究所講究録, A note on the paper "A knot with destabilized bridge spheres of arbitrarily high bridge number", Yeonhee Jang; Tsuyoshi Kobayashi; Makoto Ozawa; Takao Kazuto, 2018年, 2099, 89, 104
  • 査読無し, その他, 京都大学数理解析研究所講究録, On keen weakly reducible bridge splittings of links, Ayako Ido; Yeonhee Jang; Tsuyoshi Kobayashi, 2023年, 2263, 79, 86

講演・口頭発表等

  • 小林毅, 国内, 結び目の数理IV, On keen bridge splittings of links, 口頭発表(一般)
  • Women in Mathematics - a Panorama of Contributions, Bridge splittings of links as viewed from the curve complex, 2017年, その他
  • The 6th TAPU-KOOK Joint Seminar on Knots and Related Topics, Knots with non-minimal dstabilized bridge spheres, 2014年, その他
  • A Satellite Conference of Seoul ICM 2014: Knots and Low Dimensional Manifolds, Bridge splittings of links with Hempel distance n, 2014年, その他
  • Yeonhee Jang, 国際, The 13th KOOK-TAPU Joint Seminar on Knots and Related Topics, On keen bridge splittings, 口頭発表(招待・特別), 2022年07月27日, 2022年07月26日, 2022年07月28日, その他
  • Yeonhee Jang, Iberoamerican and Pan Pacific International Conference on Topology and its Applications, On keen bridge splittings of links, 2023年09月11日, 2023年09月11日, 2023年09月14日, その他
  • Yeonhee Jang, Intelligence of Low-dimensional Topology 2023, On keen bridge splittings of links, 2023年05月26日, 2023年05月24日, 2023年05月26日, その他
  • Workshop on topology and geometry of 3-manifolds, Keenness for Heegaard splittings of 3-manifolds and bridge splittings of links, 2023年10月06日, その他

共同研究・競争的資金等の研究課題

  • 研究活動スタート支援, 21K20328, 研究代表者, へガード理論に基づく3次元多様体と絡み目の研究
  • 研究活動スタート支援, 21K20328, 研究代表者, へガード理論に基づく3次元多様体と絡み目の研究
  • 基盤研究(C), 2022年04月01日, 2026年03月31日, 22K03313, 大域構造の空間を基軸とする低次元トポロジーの研究とその応用, 小林 毅; 村井 紘子; 張 娟姫, 日本学術振興会, 科学研究費助成事業, 奈良女子大学, 3250000, 2500000, 750000, kaken
  • 研究活動スタート支援, 2021年08月30日, 2023年03月31日, 21K20328, ヘガード理論に基づく3次元多様体と絡み目の研究, 張 娟姫, 日本学術振興会, 科学研究費助成事業, 奈良女子大学, 1950000, 1500000, 450000, 本研究の目的は、ヘガード理論の観点を用いて3次元多様体と絡み目の様々な性質やその関係を明確にさせることである。特に、3次元多様体のヘガード分解と絡み目の橋分解の複雑さを表す指標の一つである「Hempel距離」という概念と多様体および絡み目の幾何的性質や対称性等がどう関係しているかを明らかにすることを目標の一つとして設定していた。それに関して、小林毅氏、井戸絢子氏と共同研究を行い、keenおよびstrongly keenな橋分解について調べた結果、任意の自然数nとb、任意の正の整数gに対して、(g,b)=(0,1)または(g,b,n)=(0,3,1)の場合を除き、strongly keenな(g,b)-橋分解で距離nのものが存在することが証明できた。また、(g,b,n)=(0,3,1)の場合については、どんな距離1の(0,3)-橋分解もkeenにはなれないという、興味深い結果を得ることもできた。また、weakly keenであってstrongly keenでないようなHeegaard分解および橋分解を構成する方法についても、現在も研究が継続中である。, kaken
  • 研究活動スタート支援, 2013年08月30日, 2015年03月31日, 25887039, 3次元多様体のヘガード分解や絡み目の橋分解の距離に関する研究, 張 娟姫, 日本学術振興会, 科学研究費助成事業, 奈良女子大学, 2730000, 2100000, 630000, 与えられた2以上の自然数をヘンペル距離として持つへガード分解及び絡み目の橋分解の存在を証明し、更にその距離を実現する円盤の対が一意的であるものも存在することを示した。また、結び目の橋分解の間の関係をグラフで表すことができることに注目し、新しいタイプのグラフがある種の結び目の橋分解の関係を表すことを示した。特にこの結び目は「極小的であるが最少ではない」橋分解を持つ興味深い例でもある。, kaken


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.