Not Refereed, 『経済学論叢』(同志社大), 奈良県スギ?ヒノキ林における生長量調査, MURAMATSU Kanako, 2019, 70, 4, 277-288
Not Refereed, LAND SURFACE REMOTE SENSING II, SPIE-INT SOC OPTICAL ENGINEERING, Estimating the seasonal maximum light use efficiency, Kanako Muramatsu; Shinobu Furumi; Noriko Soyama; Motomasa Daigo, Light use efficiency (LUE) is a key parameter in estimating gross primary production (GPP) based on global Earth-observation satellite data and model calculations. In current LUE-based GPP estimation models, the maximum LUE is treated as a constant for each biome type. However, the maximum LUE varies seasonally. In this study, seasonal maximum LUE values were estimated from the maximum incident LUE versus the incident photosynthetically active radiation (PAR) and the fraction of absorbed PAR. First, an algorithm to estimate maximum incident LUE was developed to estimate GPP capacity using a light response curve. One of the parameters required for the light response curve was estimated from the linear relationship of the chlorophyll index and the GPP capacity at a high PAR level of 2000 (mu molm(-2)s(-1)), and was referred to as the maximum GPP capacity at 2000". The relationship was determined for six plant functional types: needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, broadleaf evergreen trees, C3 grass, and crops. The maximum LUE values estimated in this study displayed seasonal variation, especially those for deciduous broadleaf forest, but also those for evergreen needleleaf forest., 2014, 9260, 92603R-1, 10.1117/12.2069142
Not Refereed, LAND SURFACE REMOTE SENSING, SPIE-INT SOC OPTICAL ENGINEERING, Global land cover classification using annual statistical values, Noriko Soyama; Kanako Muramatsu; Motomasa Daigo, Global land cover data sets are required for the study of global environmental changes such as global biogeochemical cycles and climate change, and for the estimation of gross primary production. To determine land cover classification condition, producers examine the phenological feature of each land cover class's sample area with vegetation indices or only reflectance. In this study, to detect the phenological feature of land surfaces, we use the universal pattern decomposition method (UPDM) three coefficients and two indices; the modified vegetation index based on the UPDM (MVIUPD) and the chlorophyll index (CIgreen). The UPDM three coefficients are corresponded to actual objects; water, vegetation and soil. To detect the phenological feature of each land cover class simply, we use annual statistical values of the UPDM coefficients and two indices. By visualizing three statistical values with combination of RGB, land areas with similar phenological feature are able to detect globally. We produced the global land cover products by applying this method with MODIS Aqua Surface Reflectance 8-Day L3 Global 500m data sets of 2007. The result was roughly similar to the MOD12Q1 of the same year., 2012, 8524, 10.1117/12.977321
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, IMPROVEMENT OF TERRESTRIAL GPP ESTIMATION ALGORITHMS USING SATELLITE AND FLUX DATA, J. Thanyapraneedkul; K. Muramatsu; M. Daigo; S. Furumi; N. Soyama, In our research approach, Gross Primary Production (GPP) is directly estimated from canopy reflected light. Photosynthesis is done only exposed area by solar light. We consider that reflected radiance has information of the exposed area, since photosynthesis can be directly estimated from reflected light(1)). Photosynthesis process in chlorophyll consists of 2 processes. The one is light reactions that can detect by vegetation index. The other is carbon reduction is controlled by stomata opening and closing which effected by weather conditions. We study the relationship between these variables and photosynthesis conditions. This research objective is to improve accuracy of terrestrial GPP estimation algorithm by using Vegetation Index (VI) and combine with Fluxes data that can reveal empirical photosynthesis rate in each site around the world. The first part of GPP estimation algorithm is to find maximum GPP (Pmax_best) of plant under most favourable conditions (No stresses) from light response curve. Next step, we will analyze with weather conditions to find Pmax for GPP estimation. Present research's results show Pmax_best highest in deciduous needle leaf forest, grassland and evergreen needle leaf forest, respectively. Our results indicated that Pmax_best and VI have a tendency. Linear relationship was found between Pmax_best and NDVI in grassland (r(2) = 0.92), deciduous needle leaf forest (r(2) = 0.71) and paddy filed (r(2) = 0.87). These relationships can be one of representative for improving global GPP estimation algorithms in GCOM-C/SGLI project., 2010, 38, 814, 819
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, ALGORITHM DEVELOPMENT OF VEGETATION INDICES FOR MONITORING AND ESTIMATING VEGETATION QUANTITIES FOR GCOM-C PROJECT.-FOCUSING ON PADDY FIELDS, S. Furumi; K. Muramatsu; M. Daigo; N. Soyama, Monitoring the vegetation activity is important for understanding the carbon cycle and the vegetation response to environmental changes. GCOM-C (Global Change Observation Mission for Climate) satellite will be launched in 2014, and it has a SGLI (Second-generation global imager) sensor with 250 m spatial resolution. In generally, it is used for monitor vegetation activities with satellite observation that vegetation indices such as normalized vegetation index NDVI ((Kidwell, KB., 1990), enhanced vegetation index EVI ((Huete et al., 1999)) and so on. From the satellite observation, reflected light from the ground object has a mixture information such as vegetation coverage, depth, kinds of vegetation and vegetation activities. Vegetation indices characteristics are studied and reported in a lot of papers. We consider that a set of vegetation indices is needed to extract the quantities of vegetation. The set of vegetation indices is planed to use for estimating gross primary production of vegetation. To estimate gross primary production, chlorophyll content per leaf area is important parameter. We have studied the relationship between chlorophyll content per leaf area and spectral reflectance for several vegetation states for several kinds of broad leaf. In the previous study (S. Furumi et. al, 1998 (Furumi et al., 1998)), the reflectance is reducing against the chlorophyll content is increasing for blue, green and red wavelength. For near infrared wavelength, the reflectance is not changed against the chlorophyll contents is increasing. In this study, we focus on paddy field. Appropriate fertilizer causes higher chlorophyll content of a leaf. We measured the spectral reflectance, photosynthesis, height of rice plant, the number of stem at the ground, the spectral reflectance using RC helicopter for fertilization and no-fertilization area at Nara prefectural agriculture center in Kashihara, Nara. Using these data, we studied the characteristics of spectral reflectance difference between fertilization and no-fertilization area. For ground measurement spectral reflectance, we found that the spectral shape difference between them. For fertilization rice leaf, the normalized reflectance of visible wavelength is lower than that for no-fertilization rice leaf. And the normalized reflectance of near infrared wavelength is higher for fertilization rice leaf than that for no-fertilization rice leaf. These results' tendency was agree with the previous study of characteristics of reflectance against chlorophyll contents of a leaf. Using this characteristics, the index for chlorophyll content is studied., 2010, 38, 916, 919
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, ESTIMATING AND VALIDATION THE NET PRIMARY PRODUCTION AROUND YATSUGATAKE MOUNTAIN AREA, JAPAN FOR GCOM-C/SGLI PROJECT, K. Ikegami; K. Muramatsu; M. Daigo; S. Furumi; Y. Honda; K. Kajiwara, GCOM-C satellite will be launched in 2014 and carry Second generation Global Imager (SGLI) that observes land area with 250m spatial resolution. SGLI sensor is a follow-on mission of GLI sensor on boarded ADEOS-II satellite. For SGLI project, it's needed to increase the accuracy of net primary production (NPP) estimation. NPP with 250m spatial resolution data of ADEOS-II/GLI is estimated, and compared with validation data, the validation data was taken by the field survey of the Larch forest data at Yatsugatake site in Yamanashi, Japan. NPP estimation value using GLI data was higher than value using field survey data. Two reasons are considered. One is that the model calculation meteorological data used for NPP estimation. Another is that light-photosynthesis curve on NPP estimation algorithm is not applicable for the Larch forest. Since the NPP was estimated another data sets such as the meteorological data observed on the ground. Annual NPP difference between them was 0.5 KgCO(2)/m(2)/year. It was the 40% of the difference of NPP estimation between satellite data and model calculation meteorological data sets, and field survey. The cause of remaining difference will be in the light-photosynthesis curve on NPP estimation algorithm. To increase accuracy of estimation, photosynthesis of a Larch tree was studied., 2010, 38, 920, 924
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, VEGETATION TYPES MAPPING USING ALOS/AVNIR-2 AND PRISM DATA USING UNIVERSAL PATTERN DECOMPOSITION METHOD, K. Muramatsu; K. Masugi; N. Soyama; S. Furumi; M. Daigo, Vegetation species maps are useful for forestry managements and environmental ecological study. From the forestry management, broad and conifer leaf forest should be mapped. In addition to them, land-cover mapping data with high resolution is needed as validation data sets for low resolution's land-cover mapping results. SGLI sensor on board GCOM-C satellite, which will be launched in 2014, has 250m spatial resolution and it's data will be used for making global land-cover data set. ALOS satellite was launched in 2006. It has AVNIR-2 sensor and PRISM sensor. AVNIR-2 sensor has four spectral bands 460, 560, 650 and 830nm with 10-m spatial resolution. PRISMsensor has panchromatic band from 520nm to 770 nm with 2.5m spatial resolution. If use the both of image, pseudo high spatial multi-spectal image can be processed. Because of the spatial resolution and multi-spectral information, these sensor data are expected to useful for making high resolution land-cover data set. We have developed Universal Pattern Decomposition Method (UPDM)(Zhang, L.F. et. al, 2006 (Zhang et al., 2006)) and Modified Vegetation Index based on UPDM (MVIUPD)(Zhang, L. F. et. al, 2007 (Zhang et al., 2007) and Xiong, Y., 2005 (?)) for satellite sensor data analysis for land cover mapping and vegetation monitoring. In the UPDM method, three coefficients of water, vegetation and soil is calculated using three standard patterns of water, vegetation and soil. One of this method's characteristics is the UPDM coefficients from different sensors for the same object being same as each other. The capability of vegetation species mapping was studied with ALOS/AVNIR-2 data and UPDM method. Japanese cedar, Japanese cypress, deciduous forest, bamboo forest, orchard and grass land can be classified using AVNIR-2 summer and winter data. In this study, AVNIR-2 and PRISM data are used for vegetation types mapping using universal pattern decomposition method. Firstly, the pan-sharpen image was processed using AVNIR-2 and PRISM data. Each band's Digital Number (DN) value of AVNIR-2's band is calculated using DN of PRISM and AVNIR-2. The reflectance of AVNIR-2 is calculated from calculated DN values. UPDM method is applied to the set of re-calculated reflectance. Using the coefficients of UPDM and vegetation index, evergreen forest and deciduous forest were classified using two seasonal data. These results are compared with forest resource information. The tendency was agree with each other, although detailed validation is needed. From these results, the UPDM method can be applied to pan-sharpen image and the pan-sharpen image can be used for vegetation type classification. In the near future, calculation methods with retaining the original reflectance should be improved., 2010, 38, 902, 907
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, A STUDY ON ESTIMATION OF TREES HEIGHT IN JAPANEASE CEDAR AND JAPANEASE CYPRESS IN NARA USING ALOS/PRISM SATELLITE SENSOR, N. Nino; K. Muramatsu; M. Daigo; N. Soyama, An estimation of wood's volume is very important issue for forest management, and estimating the carbon stock, and absorption of carbon from the atmosphere for global warning. To estimate wood's volume, tree height is important key parameter. ALOS satellite was launched on January 24, 2006 by Japan Aerospace Exploration Agency (JAXA). The PRISM instrument was mounted on ALOS satellite. Its spatial resolution is 2.5m, its spectral range from 0.55 to 0.77 mu m, and it provides of the different directional image, nadir, backward, forward. Using the sets of different directional image, Surface height can be estimated. The surface height will be different from ground level. Focusing on this difference, we consider that the difference is trees height. In this paper, trees height was estimated from PRISM and compare with real trees height., 2010, 38, 908, 911
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, DEVELOPMENT OF VALIDATION DATA SETS FOR GLOBAL LAND COVER CLASSIFICATION USING ALOS/AVNIR-2 DATA, N. Soyama; K. Muramatsu; S. Furumi; M. Daigo, The GCOM Climate first generation satellite (GCOM-C1) project started in October 2009 and each research has proceeded to the aim of project. Our final aim in GCOM-C1 project is producing global land cover data sets that provide much useful information for the study of global environmental changes such as global biogeochemical cycles and climate change, and for the estimation of net primary production. In this study, we proposal a land cover class structure of global land cover, and apply to produce validation data sets for the land cover classification system with low resolution data using high resolution satellite data sets, ALOS/AVNIR-2 data sets. To determine the classification conditions in our classification system, we used the universal pattern decomposition method (UPDM) coefficients and the modified vegetation index based on the UPDM (MVIUPD). As validation data sets, we produced vegetation coverage degree rank data sets and dominant class data sets. Comparisons between the ground truth data sets and the results of our land cover classification system with ALOS/AVNIR-2 showed many areas where classes agreed. Using the classification results, validation data sets were produced., 2010, 38, 937, 940
Not Refereed, NETWORKING THE WORLD WITH REMOTE SENSING, COPERNICUS GESELLSCHAFT MBH, OBJECT-ORIENTED CHANGE DETECTION FOR HIGH-RESOLUTION IMAGERY USING A GENETIC ALGORITHM, Yuqi Tang; Xin Huang; Kanako Muramatsu; Liangpei Zhang, In this paper, we propose a novel method of change detection for high-resolution remote sensing imagery. The method has three primary processes: image segmentation, image difference and change detection. The pre-processed multi-temporal images are segmented into objects by a multi-resolution segmentation algorithm. Then a difference image is generated according to the pair of segmented maps with an interval. Each object is represented by the mean value of some spectral absolute-valued differences, which are calculated for each pixel in it. Finally, by defining the iterative degree, a genetic algorithm (GA) was employed to search the optimal binary change detection map. In the searching procedure, the crossover and mutation was applied to produce new individuals. According to our experiments using the QuickBird imagery, the Overall Errors of the proposed method decreased by more than 2500 pixels compared with the pixel-based change detection using a GA. Meanwhile, it decreased by more than 1000 pixels compared with the object-oriented change vector analysis (CVA)., 2010, 38, 769, 774
Not Refereed, Doshisha University world wide business review, Doshisha University, 関西周辺領域における二酸化炭素排出量マップの作成, MURAMATSU Kanako, 2009, 10, 2, 7-13, 13
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県東吉野村における二酸化炭素濃度の動態解析III, MURAMATSU Kanako, 2009, 10, 2, 35-53, 53
Not Refereed, Doshisha University world wide business review, Doshisha University, Tree height measurement in Mt. Yatsugatake, Yamanashi, Japan, MURAMATSU Kanako; J. Thanyapraneedkul; K.Muramatsu; K. Ikegami; M. Daigo, 2009, 10, 2, 54-60, 60
Not Refereed, Doshisha University world wide business review, Doshisha University, ALOS/AVNIR-2を用いた皆伐地の検出に関する考察, MURAMATSU Kanako, 2009, 10, 2, 111-115, 115
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLI空間分解能250mデータを用いた八ヶ岳周辺における植生純一次生産量の推定と検証, MURAMATSU Kanako, 2009, 10, 2, 69-85, 85
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県東吉野森林における二酸化炭素濃度観測データの解析, MURAMATSU Kanako, 2009, 10, 2, 86-100, 100
Not Refereed, Proceedings of the 30th Asian Conference on Remote Sensing, Doshisha University, Land Cover Classification of Uganda using ADEOS-II/GLI Mosaic data., MURAMATSU Kanako; Noriko Soyama; Kanako Muramatsu; Shinobu Furumi; Motomasa Daigo; Noboru \nFujiwara, In Uganda, the deforestation is a big problem like another countries in Africa and Latin America, and farmland areas show a yearly increase. It is very difficult to detect the small farmland area using low resolution satellite data sets. In this study, we produced the land cover map of Uganda using ADEOS-II/GLI 250 m mosaic data sets. The classification conditions are determined by referring to the Land Cover/Use Map of the National Biomass Study 2003. Finally, we verified the land cover classification results with the ground truth data which are collected from August to September in 2008., 2009, 10, 2, 66, 77
Not Refereed, Proceedings of The 30th Asian Conference on Remote Sensing, Vegetation species classification using ALOS/AVNIR-2 data, MURAMATSU Kanako; K. Muramatsu; A. Tahara; N.Soyama; S. Furumi; M. Daigo; N. Fujiwara, 2009
Not Refereed, Proceedings of the 30th Asian Conference of Remote sensing, Doshisha University, Improvement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data, MURAMATSU Kanako; J. Thanyapreneedkul; K. Muramatsu; M. Daigo; N. Soyama; S. Furumi; N. Fujiwara, Ecosystem process model and remote sensing is useful for estimate Net Primary Production (NPP). This research will study to improve accuracy of terrestrial NPP estimation using ADEOS-II/GLI data as input towards Global Climate Observation Mission and carry Second generation Global Imager (GCOM-C/SGLI) that will be launched in near future. Fluxes data from FluxNet network were used to improve NPP estimation algorithms from stand scale up to regional and global estimates. Firstly, Gross Primary Production (GPP) was estimated from flux Net Ecosystem Exchange (NEE) data by analyze GPP and PAR relationship. GPP is expected to be a function of PAR. In this study the relation ship is exponential (rectangular hyperbola) the maximum GPP (Pmax) at light saturation and slope to understand the photosynthesis capability be found. In next step, ADEOS-II/GLI data vegetation condition and meteorological variable will be utilized for NPP estimation as well., 2009, 10, TS12-04-2, 78, 88
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLIデータを用いた全球土地被覆分類に関する考察(II), MURAMATSU Kanako, 2008, 9, 2, 63, 77
Not Refereed, Doshisha University world wide business review, Doshisha University, ユニバーサルパターン展開法(UPDM)を用いたLandsat/MSSデータでの雲除去に関する研究, MURAMATSU Kanako, 2008, 9, 2, 87, 99
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県東吉野村における二酸化炭素濃度の動態解析, MURAMATSU Kanako, 2008, 9, 2, 78, 86
Not Refereed, Doshisha University world wide business review, Doshisha University, 衛星データの熱赤外バンドデータを用いた気温推定に関する研究(II), MURAMATSU Kanako, 2008, 9, 2, 100, 116
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県における自然環境データベース作成のための植生変動解析--ALOS/AVNIR-2データのユニバーサルパターン展開法の適用--, MURAMATSU Kanako, Our final goal is to make a database for environmental change in Nara prefecture using satellite sensor data. Landsat satellite was launched in 1972 for the first time. Using the data, environmental change can be studied from 1970s. And ALOS satellite was launched in 2006. In this study, ALOS/AVNIR-2 data is used for landcover mapping with Universal pattern decomposition method. Using the coefficients of UPDM, the data of different sensors is analyzed in the same axis of the coefficients. From this study, it is clear that the same classification criteria with Landsat/TM, MSS case for ALOS/AVNIR-2 data., 2008, 10, 1, 161-167, 167
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県東吉野村における二酸化炭素濃度の動態解析II, MURAMATSU Kanako, 2008, 10, 1, 180-187, 187
Not Refereed, Doshisha University world wide business review, Doshisha University, Parameterization of 3PGS model for aboveground biomass estimation in Eucalyptus camadulensis and Acacia mangium plantation, MURAMATSU Kanako; Juthasinee Thanyapraneedkul; K. Muramatsu; J. Suzaki; M. Daigo, Within the framework of Kyoto protocol, carbon sink concept is a major topic for the global climate change. There is an urgent need to collect vital data on forest plantations. Therefore, there is an obvious need to develop methods for estimating the biomass at diverse sites with non-destructive methods. Modeling is one of the effective approaches and Process Based Models (PBMs) that can provide a better understanding of stand growth and dynamics. A simplified model of PBMs is 3PG (Physiological Principles Predicting Growth) [1] and modified version is 3PGS model (Physiological Principles Predicting Growth with Satellite data) [2]. The model enables to use parameters derived from satellite data (NDVI : Normalized Difference Vegetation Index and FPAR : The Fraction of Photosynthetically Active Radiation) as well as meteorological data. The objective of this study is to estimate aboveground biomass (W_
) by using 3PGS model. W_ were validated with field-measured values. The Field measurements were conducted in Eucalyptus camaldulensis and Acacia mangium plantation that is the first time to apply 3PGS model for these 2 species. Sensitivity analysis was done and found 4 sensitive parameters that need to be accurately determined are NDVI_FPAR_Constant, NDVI_ FPAR_Intercept, Canopy Quantum Efficiency (Alpha) and Specific Leaf Area (SLA). The sensitive parameters were simulated to calculate W_ thus accurately sensitive parameters are required. Sensitive parameters are Alpha and SLA. We found suitable Alpha are 0.07 and 0.13 molC/mol PAR and SLA are 22.5 and 35 (m^2/kg)for E. camaldulensis and A. mangium respectively. Relationship between NDVI and FPAR values, Logarithm is the best for achieving NDVI_FPAR_Intercept, NDVI_FPAR_Constant values. NDVI were derived from satellite data (LANDSAT ETM+ and MODIS) and FPAR were obtained from MODIS FPAR product (Moderate Resolution Imaging Spectroradiometer ; 8-day composite) and field data. Result showed 3PGS model provided better W_ of E. camadulensis than A. mangium. Moreover, in my study area LANDSAT ETM+ and FPAR from field data are suitable to derived NDVI and FPAR respectively. In future for E. camaldulensis and A. mangium's aboveground biomass (W_) estimation by using 3PGS model, Alpha and SLA values from this research can be apply in other plantation as well., 2008, 10, 1, 144-160, 160Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLIデータを用いた全球植生純一次生産量推定における二方向性反射率の影響評価, MURAMATSU Kanako, 2007, 9, 1, 90-102, 102
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良市街域と森林地帯でのCO2濃度測定タワーで観測した風向風速の特徴解析, MURAMATSU Kanako, 2007, 9, 1, 153-166, 166
Not Refereed, Doshisha University world wide business review, Doshisha University, ユニバーサルパターン展開法のLandsat/MSSへの適用, MURAMATSU Kanako, 2007, 9, 1, 137-152, 152
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLIデータを用いた全球土地被覆分類図作成に関する考察, MURAMATSU Kanako, 2007, 9, 1, 123-136, 136
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLI250mデータを用いた紀伊半島周辺地域における植生純一次生産量の推定と検証, MURAMATSU Kanako, 2007, 9, 1, 103-122, 122
Not Refereed, Doshisha University world wide business review, Doshisha University, Topographical effects on estimating vegetation index in mountain areas from Landsat data, MURAMATSU Kanako; Wei Hiang; Liangpei Zhang; M. Daigo; S. Furumi; K.Muramatsu, 2007, 9, 1, 35-44, 44
Not Refereed, Doshisha University world wide business review, Doshisha University, 古海忍、大村友希、陳路、村松加奈子、醍醐元正,\n人工衛星データによる奈良県スギ・ヒノキ林における純一次生産量推定,, MURAMATSU Kanako, 2006, 8, 1, 26, 31
Not Refereed, Doshisha University world wide business review, Doshisha University, 緯度の異なる奈良・香港における紫外線・長波放射量の観測とその季節変動, MURAMATSU Kanako, 2006, 8, 1, 71, 77
Not Refereed, Doshisha University world wide business review, Doshisha University, GLIセンサを用いた森林域の地表面温度の推定と検証に関する考察, MURAMATSU Kanako, 2006, 8, 1, 62, 70
Not Refereed, J. of the Japan Soc. of photogrammetry and remote sensing, Sensitivity analysis of net primary production estimation using a semi-empirical BRDF model and reflectance observed by RC helicopter for Japanese cedar forest, MURAMATSU Kanako; L. Chen; S. Furumi; Y.Xiong; K. Muramatsu; Y.Honda; K.Kajiwara; N.Fujiwara, 2006, 6, 45, 25-40, 40
Not Refereed, Proceedings of SPIE - The International Society for Optical Engineering, Estimation of plant water content using ABEOS-II/GLI data, Kanako Muramatsu; Ichirow Kaihotsu, Algorithms to estimate soil moisture using Advanced Microwave Scanning Radiometer (AMSR) data and experiments to determine their validity have been developed. Since estimations of soil moisture using AMSR data are affected by vegetation moisture content, determination of the quantity and distribution of vegetation is necessary. A variety of information can be obtained simultaneously using optical sensors such as Global Imager (GLI). In this study, we attempted to estimate plant water content using the vegetation index obtained with GLI to determine its sensitivity to vegetation coverage as well as the relationships among vegetation coverage, biomass and plant water content based on field survey data., 2005, 6043, 604312-1-9, 10.1117/12.654881
Not Refereed, Proceedings of SPIE - The International Society for Optical Engineering, Estimation of net primary production using the retrieved reflectance by unmanned helicopter with semi-empirical BRDF model, L. Chen; S. Furumi; Y. Xiong; K. Muramatsu; Y. Honda; K. Kajiwara; N. Fujiwara, A method of net primary production (NPP) estimation from pattern-decomposition-based vegetation index (VIPD) using ADEOS-II/GLI data has been developed. But since the global sensor (GLI) could not be directly above the objective when observing, it is necessary to consider the effect of bi-directional reflectance distribution function (BRDF). To validate the method of NPP estimation and for the algorithm for the retrieval of albedo from GLI, bi-directional reflectance factors (BRF) observations for the reflectance of a cedar forest on the Kii peninsula with a sensor onboard an unmanned helicopter were held in July, 2002. In this paper, a kernel-based BRDF model is used to remove the BRDF's effect on the reflectance. The semi-empirical Ross-Li (reciprocal RossThick-LiSparse) model and its performance under conditions of BRF observations are discussed, showing that the retrievals obtained are reliable. The retrieved reflectance is the nadir viewing and the overhead sun could be achieved by this model. And then VIPD could be calculated from the retrieved reflectance. With the data of VIPD and photosynthetically active radiation (PAR), NPP is estimated as 0.36 KgCO 2/m 2/month., 2005, 6043, 604316-1-8, 10.1117/12.654887
Not Refereed, Doshisha University world wide business review, Doshisha University, The ratio of photosynthetically active radiation to global solar radiation, MURAMATSU; Kanako, K; Muramatsu; S. Furumi; Y. Xiong; M. Daigo; N.Fujiwara, 2005, 6, 2, 58-63, 63
Not Refereed, Doshisha University world wide business review, Doshisha University, 奈良県スギ・ヒノキ林における現地調査による植生純一次生産量の推定, MURAMATSU Kanako, 2005, 6, 2, 64-71, 71
Not Refereed, Proceedings of SPIE - The International Society for Optical Engineering, Classification of Kii peninsula area by vegetation coverage level, Noriko Soyama; Shinobu Awa; Kanako Muramatu; Motomasa Daigo, In order to study land cover classification and natural environment, we must analyze vegetation cover states of the local scale in which we can know the subject in detail, as well as and the global scale. Therefore, we need to analyze various satellite data sets which are measured with different wavelengths region and different number of bands. However, it is difficult to compare analysis results obtained using such data sets. By the universal pattern decomposition method (UPDM), which is sensor independent analysis method, we examined vegetation coverage of a pixel on data sets measured different wavelength range and different resolution which is acquired at the same place and time. In this study, in order to develop a generalization rule of vegetation coverage, we examine vegetation coverage of a pixel on 1-kilometer resolution data sets using results obtained by analyzing 250-m resolution data sets which are acquired at the same place and time as the pixel of 1-kilometers'. We defined the rule of classifying into five levels of vegetation coverage using results of high resolution data sets analyzed by the UPDM. Using the results of the analysis, we calculate vegetation coverage of Kii peninsula area., 2005, 6043, 604311-1-8, 10.1117/12.654878
Not Refereed, Doshisha University world wide business review, Doshisha University, A study of generalization rule on classification for vegetation coverage of a pixel, MURAMATSU Kanako, 2005, 6, 2, 16-22, 22
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLI全球モザイクデータを用いた土地被覆分類の研究, MURAMATSU Kanako, 2005, 7, 1, 54-66, 66
Not Refereed, Doshisha University world wide business review, Doshisha University, 人工衛星データによる全球陸域純一次生産量の推定, MURAMATSU Kanako, 2005, 7, 1, 67-77, 77
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-Ⅱモンゴル高原実験領域における被覆率の推定と分類図の作成, MURAMATSU Kanako, 2005, 7, 1, 111-123, 123
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLIデータを用いたモンゴル高原実験領域における植生の含水量分布図作成の試み, MURAMATSU Kanako, 2005, 7, 1, 124-134, 134
Not Refereed, Doshisha University world wide business review, Doshisha University, ADEOS-II/GLIデータを用いた山形県酒田市の水田における植生純一次生産量の推定, MURAMATSU Kanako, 2005, 7, 1, 239-247, 247
Not Refereed, Proceedings of SPIE - The International Society for Optical Engineering, Estimation of global terrestrial net primary production using ADEOS-II/GLI data, Yan Xiong; Lu Chen; Shinobu Furumi; Kanako Muramatsu; Motomasa Daigo; Noboru Fujiwara, Satellite ADEOS-II was launched on 14 December 2002 by Japan Aerospace Exploration Agency (JAXA). The purpose of this study is to estimate global terrestrial net primary production (NPP) with a newly developed algorithm that estimates gross photosynthesis using ADEOS-II/GLI data as input. It is the first time that ADEOS-II/GLI data have been used as input to estimate NPP. The NPP estimation error is 26%. In this study, total ANPP estimates between 60°N and 60°S in the world were 65.2±17.0 [10 15gC/year]. The results were compared with NPP ground measurement data, and NPP values estimated by other studies, such as NPP derived from climatic model and NPP estimated using other satellite data (e.g., NOAA/AVHRR, Terra/MODIS). The pattern of this study's distribution of estimated NPP in the world was similar to that of other studies., 2005, 6043, 604313-1-12, 10.1117/12.654882
Not Refereed, Doshisha University world wide business review, Doshisha University, Energy consumption, solar energy and net primary production by vegetation in Kii peninsula, Japan, MURAMATSU Kanako; K. Muramatsu; M.Otsuka; Y.Xiong; Y.Cen. S.Furumi; N.Fujiwara; M.Daigo, 2004, 5, 2, 86-93, 93
Not Refereed, EARTH'S ATMOSPHERE, OCEAN AND SURFACE STUDIES, PERGAMON-ELSEVIER SCIENCE LTD, The diurnal time series relationship between radiant energy from surface and from air for satellite data analysis, K Muramatsu; N Fujiwara; AB Adamezyk, Solar irradiance, surface and air temperatures change periodically day by day. We measured surface temperature, air temperature, humidity and wind velocity on concrete, asphalt, soil and grass every hour for 24 hours. The relationship between the diurnal radiant energy from surface and air, and diurnal solar irradiance were studied as a function of time. A linear relationship was established between them, when the phases were synchronized. The relationship between diurnal radiant energy from the surface and from air was studied. A clear linear relationship was found between them. The values of parameters of the relationship were determined using measured data and compared with the estimated values using the radiation balance model. Using a linear relationship, we can estimate the surface and air radiant integrated over one day using Landsat/TM or ADEOS-II/GLI data. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved., 2002, 30, 11, 2523, 2528
Not Refereed, J. of the remote sensing society of Japan, The diurnal time series relationship between surface/air\ntemperature and global solar irradiance, MURAMATSU Kanako, 2001, 21, 5
Not Refereed, INTERNATIONAL JOURNAL OF REMOTE SENSING, TAYLOR & FRANCIS LTD, Pattern decomposition method in the albedo space for Landsat TM and MSS data analysis, K Muramatsu; S Furumi; N Fujiwara; A Hayashi; M Daigo; F Ochiai, We have developed a 'pattern decomposition method' based on linear spectral mixing of ground objects for n-dimensional satellite data. In this method, spectral response patterns for each pixel of an image are decomposed into three components using three standard spectral shape patterns determined from the image data. Applying this method to Landsat Thematic Mapper data, six-dimensional data are successfully transformed into three-dimensional data. Nearly 94% of the information in the six-dimensional data is retained in the three components. This method is very useful for classifying and monitoring changes in land cover., Jan. 2000, 21, 1, 99, 119
Not Refereed, REMOTE SENSING FOR LAND SURFACE CHARACTERISATION, PERGAMON PRESS LTD, Pattern decomposition method and a new vegetation index for hypermultispectral satellite data analysis, K Muramatsu; S Furumi; A Hayashi; Y Shiono; A Ono; N Fujiwara; M Daigo; F Ochiai, We have developed the "pattern decomposition method" based on linear spectral mixing of ground objects for n-dimensional satellite data. In this method, spectral response patterns for each pixel in an image are decomposed into three components using three standard spectral shape patterns determined from the image data. Applying this method to AMSS (Airborne Multi-Spectral Scanner) data, eighteen-dimensional data are successfully transformed into three-dimensional data. Using the three components, we have developed a new vegetation index in which all the multispectral data are reflected. We consider that the index should be linear to the amount of vegetation and vegetation vigor. To validate the index, its relations to vegetation types, vegetation cover ratio, and chlorophyll contents of a leaf were studied using spectral reflectance data measured in the field with a spectrometer. The index was sensitive to vegetation types and vegetation vigor. This method and index are very useful for assessment of vegetation vigor, classifying land cover types and monitoring vegetation changes. (C) 2000 COSPAR. Published by Elsevier Science Ltd., 2000, 26, 7, 1137, 1140
Not Refereed, IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG, Automated detection and removal of clouds and their shadows from landsat TM images, B Wang; A Ono; K Muramatsu; N Fujiwara, In this paper, a scheme to remove clouds and their shadows from remotely sensed images of Landsat TM over land has been proposed. The scheme uses the image fusion technique to automatically recognize and remove contamination of clouds and their shadows, and integrate complementary information into the composite image from multitemporal images. The cloud regions can be detected on the basis of the reflectance differences with the other regions. Based on the fact that shadows smooth the brightness changes of the ground, the shadow regions can be detected successfully by means of wavelet transform. Further, an area-based detection rule is developed in this paper and the multispectral characteristics of Landsat TM images are used to alleviate the computational load. Because the wavelet transform is adopted for the image fusion, artifacts are invisible in the fused images. Finally, the performance of the proposed scheme is demonstrated experimentally., Feb. 1999, E82D, 2, 453, 460
Not Refereed, 水処理技術, 日本水処理技術研究会, 「パターン展開法による大阪湾の水質解析」, MURAMATSU Kanako, 1999, 40, 7, 315-320, 320
Not Refereed, J. of remote sensing soc. of Japan, Relation between vegetation vigor and a new vegetation index based on pattern decomposition method, MURAMATSU Kanako, 1998, 18, 3, 17-34, 34
Not Refereed, J. of remote sensing soc. of Japan, 日本リモ-トセンシング学会, An algorithm and a new vegetation index for ADEOS-II/GLI data analysis, MURAMATSU Kanako, 1998, 18, 12, 28-50, 148
Not Refereed, Journal of the Remote Sensing Society of Japan, 日本リモ-トセンシング学会, 「Landsat/MSS,TMデータを使ったパターン展開法による関西地域の植生変動解析」, MURAMATSU Kanako, 1997, 17, 14, 34-39, 357
Not Refereed, Journal of The Remote Sensing Society of Japan, The Remote Sensing Society of Japan, 「パターン展開法による水田解析」, MURAMATSU Kanako, We analyze paddy fields in Nara basin in order to show that the pattern expand method is reasonable for quantitative analysis of an area which is a mixture of water, vegetation and soil. The pattern expand method has been developed to analyze remote sensing multispectral data such as Landsat TM data.
First, the pattern expand method is applied to three suitable seasons' Landsat TM data. Next, these data are coregistered using affine transformation with several sets of control points, and the characteristics of paddy fields are studied through three seasons. Using three pattern expand coefficients, paddy fields can be recognized from other land cover types, and classified to three paddy field types. The coefficients of these paddy fields are compared through three seasons on the same parameter space. Lastly, paddy fields are extracted using three pattern expand coefficients, and the paddy field areas of six cities and towns in Nara basin are estimated. The paddy field areas from this analysis are in good agreement with those from statistical data., 1997, 17, 2, 5-18, 128, 10.11440/rssj1981.17.115
Not Refereed, 日本リモートセンシング学会誌, 「衛星データ解析のためのパターン展開法」, MURAMATSU Kanako, 1996, 16, 3, 17-34, 34
Not Refereed, PHYSICS LETTERS B, ELSEVIER SCIENCE BV, MEASUREMENT OF THE PHOTON STRUCTURE-FUNCTION F-2(GAMMA) AND JET PRODUCTION AT TRISTAN, K MURAMATSU; H HAYASHII; S NOGUCHI; N FUJIWARA; K ABE; T ABE; ADACHI, I; M AOKI; M AOKI; S AWA; R BELUSEVIC; K EMI; R ENOMOTO; H FUJII; K FUJII; T FUJII; J FUJIMOTO; K FUJITA; B HOWELL; N IIDA; H IKEDA; R ITOH; H IWASAKI; M IWASAKI; R KAJIKAWA; K KANEYUKI; S KATO; S KAWABATA; H KICHIMI; M KOBAYASHI; D KOLTICK; LEVINE, I; S MINAMI; K MIYABAYASHI; A MIYAMOTO; K NAGAI; T NAGIRA; E NAKANO; K NAKABAYASHI; O NITOH; F OCHIAI; Y OHNISHI; H OKUNO; T OKUSAWA; K SHIMOZAWA; T SHINOHARA; A SUGIYAMA; N SUGIYAMA; S SUZUKI; K TAKAHASHI; T TAKAHASHI; M TAKEMOTO; T TANIMORI; T TAUCHI; F TERAMAE; Y TERAMOTO; N TOOMI; T TOYAMA; T TSUKAMOTO; S UNO; T WATANABE; Y WATANABE; A YAMAGUCHI; A YAMAMOTO; M YAMAUCHI, We have measured the photon structure function F2gamma in the reaction e+e- --> e+e- hadrons for average Q2 values from 5.1 to 338 GeV2 by using data collected by the TOPAZ detector at TRISTAN. The data have been corrected for detector effects and are compared with theoretical expectations based on QCD. The structure function F2gamma increases as In Q2, as expected. A sample of events with one or two distinct jets has been identified in the final state. Although two-jet events can be explained solely by the point-like perturbative part, one-jet events require a significant hadron-like part in addition., Jul. 1994, 332, 3-4, 477, 487
Not Refereed, ADEOS-II JRAモンゴル地上検証実験報告書, Estimation of vegetation coverage and land cover mapping using the pattern decomposition method in ADEOS-II Mongolian plateau experiment (AMPEX) site, K. Muramatsu; Y. Xiong; S. Nakayama; F. Ochiai; M. Hirata; K. Oishi; B. Bolortsetseg; D. Oyunbaatar; I. Kaihotsu, 2005, 71, 82
Not Refereed, ナント経済月報2月号, 人工衛星データを用いた環境モニタリング〜解析事例:竹林の分布状況調査〜, 村松加奈子, Feb. 2021, Introduction other
日本リモートセンシング学会 第69回学術講演会論文集, GCOM-C/SGLI データを用いた植生・土壌指数と気象データの関係 -インドの乾燥地における農地モニタリングに向けて-, 澤美和子; 村松加奈子; 曽山典子, Dec. 2020, 15, 16
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, Sentinel-2/MSIデータを用いたクロロフィルインデックスの季節変化の特徴解析, 宮本紗季; 村松加奈子, Dec. 2020, 27, 28, Summary national conference
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, 地上における太陽励起のクロロフィル蛍光の猛暑日での日中変化の観測, 山本奈央; 村松加奈子; 栗山健二, Dec. 2020, 29, 30, Summary national conference
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, GCOM-C/SGLI データを用いたインド・パンジャーブ州の野焼きの抽出, 于 琨; 村松加奈子; 曽山典子, Dec. 2020, 37, 38, Summary national conference
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, Landsat8 OLI/TIRS データを用いたインドの野焼き跡地抽出, 大林真菜, 村松加奈子, Dec. 2020, 39, 40, Summary national conference
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, 現地調査データとパンシャープン画像を用いたナラ枯れ枯死木の抽出-樹冠サイズに注目して-, 藤原由季; 村松加奈子; 酒井有紀; 松井 淳, Dec. 2020, 49, 50, Summary national conference
Not Refereed, 日本リモートセンシング学会 第69回学術講演会論文集, 多時期衛星データを用いた奈良県高円山周辺におけるナラ枯れのモニタリング, 前川穂乃香; 村松加奈子, Dec. 2020, 51, 52, Summary national conference
日本リモートセンシング学会学術講演会論文集(CD-ROM), 全球土地被覆分類データのための精度検証データ作成:ボランティアによる情報の利用, 曽山典子; 佐々井崇博; 村松加奈子; 醍醐元正; 落合史生; 奈佐原顕郎, 2015, 59th
日本リモートセンシング学会第71回学術講演会論文集, GCOM-C/SGLI データを用いた地表面温度及び短波長赤外域に関する指標の特徴解析 -乾燥農地に着目して-, 澤 美和子; 村松加奈子; 曽山典子, Nov. 2021, 41, 44
日本リモートセンシング学会第71回学術講演会論文集, Sentinel-2 データを用いたインド・パンジャーブ州における野焼き箇所の抽出, 于琨; 村松加奈子, Nov. 2021, 67, 68
日本リモートセンシング学会第71回学術講演会論文集, 植生指標CIgreen, CIred-edge を用いた総生産キャパシティー推定アルゴリズム, 宮本紗季; 村松加奈子, Nov. 2021, 39, 40
日本リモートセンシング学会第70回学術講演会論文集, GCOM-C/SGLI データを用いた土壌指数と植被率の関係 -乾燥地における農地モニタリングに向けて-, 澤美和子; 村松加奈子; 曽山典子, May 2021, 73, 74
日本リモートセンシング学会第70回学術講演会論文集, Sentinel-2 データを用いたインド・パンジャーブ州における野焼き箇所の抽出条件, 于琨; 村松加奈子, May 2021, 13, 14
日本リモートセンシング学会第70回学術講演会論文集, 植生指標CIgreen, CIred-edge を用いた総生産キャパシティー推定アルゴリズム, 宮本紗季; 村松加奈子, May 2021, 47, 48
日本リモートセンシング学会第70回学術講演会論文集, Use of geostationary meteorological satellite data for estimating midday depression of photosynthesis in dry area, 村松加奈子; 森山雅雄, May 2021, 43, 46
日本気象学会大会講演予稿集, GCOM-C観測プロダクトの検証に向けた地上観測機材の校正・性能評価の取り組み, 堀雅裕; 村上浩; 今岡啓治; 小野祐作; 谷川朋範; 原田昌朋; 佐久間史洋; 片山晴善; 中島康裕; 中島幸徳; 本多嘉明; 梶原康司; 青木輝夫; 朽木勝幸; 山崎明宏; 奈佐原顕郎; 秋津朋子; 鈴木力英; 村松加奈子, 2014, 106
日本リモートセンシング学会学術講演会論文集, For GCOM-C/SGLI project, Estimating and Validating the Net Primary Production of Vegetation using around Yatsugatake Mountain area, Japan, 池上季美果; 村松加奈子; 本多嘉明; 梶原康司, 2009, 46th
日本リモートセンシング学会学術講演会論文集, For GCOM-C/SGLI project, Estimating and Validating the Net Primary Production of Vegetation using around Yatsugatake Mountain area, Japan (II), 池上季美果; 村松加奈子; 醍醐元正; 古海忍; 曽山典子; 本多嘉明; 梶原康司, 2009, 47th
日本リモートセンシング学会学術講演会論文集, Reflectance measurement of fertilized and nonfertilized paddy fields in Nara basin by unmanned helicopter, 古海忍; 古海忍; 梅垣佳代子; 陳路; 陳路; 村松加奈子; 小野朗子; 小野朗子; 本多嘉明; 本多嘉明, 2007, 42nd
日本リモートセンシング学会学術講演会論文集, BRDF effect evaluation on the global net primary production estimation using the data of ADEOS-II GLI, CHEN L.; CHEN L.; 古海忍; 古海忍; 村松加奈子; 本多嘉明; 本多嘉明; 梶原康司; 梶原康司; 近田朝子; 近田朝子, 2007, 42nd
生研フォーラム 宇宙からの地球環境モニタリング論文集, 針葉樹林NPPの推定におけるBRDF影響, 陳路; 古海忍; 熊彦; 村松加奈子; 本多嘉明; 梶原康司; 藤原昇, 2006, 15th
日本リモートセンシング学会学術講演会論文集, BRDF effect evaluation of broadleaf forest and grassland with the reflectance data observed by radio-controlled helicopter, CHEN L.; CHEN L.; 古海忍; 古海忍; 村松加奈子; 本多嘉明; 本多嘉明; 梶原康司; 梶原康司, 2006, 41st
日本リモートセンシング学会学術講演会論文集, Sensitivity analysis of Net Primary Production estimation with BRDF model using reflectance by RC helicopter, CHEN L.; 古海忍; XIONG Y.; 村松加奈子; 本多嘉明; 藤原昇, 2005, 39th
日本リモートセンシング学会学術講演会論文集, Estimation of Net Primary Production using reflectance observed by unmanned helicopter on cedar forest, CHEN L; 古海忍; 村松加奈子; 本多嘉明; 藤原昇, 2003, 35th
Doshisha University world wide business review, Doshisha University, An Estimate of Wood's Volume in Cedar Forest and Hinoki Forest, Nara by ALOS Satellite, Niinou Nozomi; Muramatsu Kanako; Daigo Motomasa, Feb. 2009, 10, 101, 110
日本リモートセンシング学会学術講演会論文集, Analysis about characters of BRDF effect for various vegetation covers using an empirical model, CHEN L.; CHEN L.; 古海忍; 古海忍; 村松加奈子; 本多嘉明; 本多嘉明; 梶原康司; 梶原康司; 近田朝子; 近田朝子, 2007, 42nd
Doshisha University world wide business review, Doshisha University, Comparison of the Global net primary production estimation with various model, Chen Lu; Yan Xiong; Furumi Shinobu; Muramatsu Kanako; Daigo Motomasa, Oct. 2006, 8, 1, 42, 48
日本リモートセンシング学会学術講演会論文集, Sensitivity Analysis of BRDF effect on the Net Primary Production Estimation of Coniferous Forest, CHEN L.; CHEN L.; 古海忍; 古海忍; 村松加奈子; 本多嘉明; 本多嘉明; 梶原康司; 梶原康司, 2006, 40th
Doshisha University world wide business review, Doshisha University, Estimation of net primary production using reflectance data observed by unmanned helicopter over a ceder forest in Nara, Japan, Chen Lu; Furumi Shinobu; Xiong Yan; Fujiwara Noboru; Muramatsu Kanako; Honda Yoshiaki; Kajiwara Koji, Mar. 2005, 6, 2, 23, 33
学術講演会論文集 = Proceedings of the ... Japanese Conference on Remote Sensing, The classification of land cover in Kii peninsula by pattern decomposition method with LANDSAT/TM mosaic data, HAYASHI Ayami; KANDA Kana; TAKAGI Ayako; MURAMATSU Kanako; FUJIWARA Noboru, 01 Nov. 1997, 23, 53, 54
学術講演会論文集 = Proceedings of the ... Japanese Conference on Remote Sensing, Pattern Expand Method in the Albedo space for LANDSAT/TM, MSS and NOAA/AVHRR Data Analysis, MURAMATSU Kanako; AWA Shinobu; HAYASHI Ayumi; FUJIWARA Noboru; OCHIAI Fumio, 01 May 1996, 20, 41, 42
Not Refereed, PHYSICS LETTERS B, ELSEVIER SCIENCE BV, EXPERIMENTAL-STUDY OF B-QUARK JETS IN E+E- ANNIHILATION AT TRISTAN, K NAGAI; R ENOMOTO; T ABE; ADACHI, I; M DOSER; H FUJII; K FUJII; T FUJII; J FUJIMOTO; N FUJIO; N FUJIWARA; K HARIGAE; H HAYASHII; S HORI; B HOWELL; N IIDA; H IKEDA; R ITOH; H IWASAKI; R KAJIKAWA; T KAMAE; S KATO; Y KATO; S KAWABATA; H KICHIMI; T KISHIDA; M KOBAYASHI; D KOLTICK; LEVINE, I; K MIYABAYASHI; A MIYAMOTO; K MURAMATSU; T NAGIRA; N NAKAGAWA; M NAKAJIMA; E NAKANO; M NAKAYAMA; H NISHIOKA; O NITOH; S NOGUCHI; F OCHIAI; M OHKURA; T OHNISHI; H OKUNO; T OKUSAWA; E SAKAI; A SHIMONAKA; K SHIMOZAWA; A SHIRAHASHI; A SUGIYAMA; S SUZUKI; N TACHIBANA; K TAKAHASHI; T TAKAHASHI; H TAKAMURE; T TANIMORI; T TAUCHI; Y TERAMOTO; T TSUKAMOTO; S UNO; Y WATANABE; A YAMAMOTO; S YAMAMOTO; M YAMAUCHI, An experimental study of b-quark jets using high-p(T) electrons was carried out at square-root s = 58 GeV with the TOPAZ detector at the e+e- collider TRISTAN at KEK. The forward-backward charge asymmetry of the b-quark was obtained to be A(bb) = -0.55 +/- 0.27 (stat.) +/- 0.07 (syst.), consistent with the standard model prediction. Also, such jet properties of the b-quark the average charged multiplicity and the rapidity of charged particles were analyzed. In order to purify the b-quark event samples in this analysis, only events with backward-going electrons or forward-going positrons were used. The energy dependence of these jet properties was studied by making comparisons with the results of the DELCO experiment at the PEP collider (square-root s = 29 GeV) at SLAC., Apr. 1992, 278, 4, 506, 510, 10.1016/0370-2693(92)90593-S
Poster presentation
MURAMATSU Kanako, (社)日本リモートセンシング学会第65回(平成30年度秋季)学術講演会, 乾燥域における総生産キャパシティーと樹冠コンダクタンス指標を用い た総生産量推定の再現性, Nov. 2018, (社)日本リモートセンシング学会, サンポートホール高松, False
MURAMATSU Kanako; Wakai, Aika; Muramatsu, Kanako, the 39th Asia Conference on Remote Sensing, 2018, Determination of Tropical Forests Parameters in Gross Primary Production Capacity Estimation Algorithm in Brazil, Oct. 2018, Kuala Lumpur, Malaysia
MURAMATSU Kanako; Muramatsu, K, SPIE Asia-Pacific remote sensing, Canopy conductance index for GPP estimation from its\ncapacity, Sep. 2018, Honolulu, Hawai, True
MURAMATSU Kanako; Kanako Muramatsu, COSPAR,2018, An algorithm of gross primary production capacity estimation from global observing satellite and the difference between GPP capacity and GPP, Jul. 2018, Pasadena, California, USA, True
MURAMATSU Kanako, (社)日本リモートセンシング学会第64回(平成30年度春季)学術講演会, 総生産量推定のための樹冠コンダクタンス指標 II, May 2018, (社)日本リモートセンシング学会, 東京大学柏キャンパス, False
MURAMATSU Kanako, (社)日本リモートセンシング学会第64回(平成30年度春季)学術講演会, ブラジルの熱帯地域における総生産量キャパシティ推定アルゴリズム の決定, May 2018, (社)日本リモートセンシング学会, 東京大学柏キャンパス, False
MURAMATSU Kanako, (社)日本リモートセンシング学会第64回(平成30年度春季)学術講演会, 奈良県高円山周辺におけるリモートセンシングによるナラ枯れの解析, May 2018, (社)日本リモートセンシング学会, 東京大学柏キャンパス, False
MURAMATSU Kanako, (社)日本リモートセンシング学会第64回(平成30年度春季)学術講演会, Google Earth Engineを用いた京阪奈地区の竹林の抽出-1, May 2018, (社)日本リモートセンシング学会, 東京大学柏キャンパス, False
MURAMATSU Kanako, (社)日本リモートセンシング学会第63回(平成29年度秋季)学術講演会, 総生産量推定のための樹冠コンダクタンス指標, Nov. 2017, (社)日本リモートセンシング学会, 酪農学園大学 (北海道江別市文京台緑町582番地), False
MURAMATSU Kanako, (社)日本リモートセンシング学会第63回(平成29年度秋季)学術講演会, リモートセンシングによるナラ枯れのモニタリング-1, Nov. 2017, (社)日本リモートセンシング学会, 酪農学園大学 (北海道江別市文京台緑町582番地), False
MURAMATSU Kanako, (社)日本リモートセンシング学会第63回(平成29年度秋季)学術講演会, 多時期データのSentinel-2データを用いた京阪奈地区の竹林の抽出?1, Nov. 2017, (社)日本リモートセンシング学会, 酪農学園大学 (北海道江別市文京台緑町582番地), False
MURAMATSU Kanako; Noriko Soyama; Kanako Muramatsu; Motomasa Daigo; Koji Kajiwara; Yoshiaki Hond; Tenri University; Nara Women’s; University \n; Doshisha University; Chiba University, International Symposium on Remote Sensing 2017, DIFFERENCES BETWEEN NEEDLE-LEAVES FOREST AND BROAD-LEAVES FOREST FROM PSEUDO MULTIDIRECTIONAL OBSERVATION DATA, May 2017, The remote sensing society of Japan, 名古屋大学, True
MURAMATSU Kanako; Kenji Kuriyama; Naohiro Manago; Koki Homma; Kanako Muramatsu; n Kenichi Yoshimura; Yuji Kominami; Hiroaki Kuze; Faculty of Engineering; Shizuoka University, Japan; Center for Environmental Remote Sensing (CEReS; Chiba University, Japan; Graduate School of Agricultural Science; Tohoku University, Japan; Kyousei Sciences Center for Life; Nature; Nara Women’s; University, Japan\n; Forestry and Forest Products Research; Institute, Japan, International Symposium on Remote Sensing 2017, STAND-OFF MEASUREMENT OF SOLAR INDUCED FLUORESCENCE FROM VEGETATION CANOPIES: APPLICATION TO FIELD AND FOREST, May 2017, The remote sensing society of Japan, 名古屋大学, True
MURAMATSU Kanako, 第20回紀伊半島研究会シンポジウム,第16回奈良女子大学共生科学研究センターシンポジウム, リモートセンシングによるナラ枯れのモニタリング, Dec. 2016, 奈良女子大学G棟2階G201教室, False
MURAMATSU Kanako, (社)日本リモートセンシング学会第61回(平成28年度秋季)学術講演会, 光ー光合成曲線を用いた総生産量推定アルゴリズムの開発:気候モデルによる気象要素の 時間変化データ利用に関する考察, Nov. 2016, (社)日本リモートセンシング学会, 新潟県新潟市新潟テルサ
MURAMATSU Kanako, (社)日本リモートセンシング学会第61回(平成28年度秋季)学術講演会, 全球の総生産量キャパシティ推定アルゴリズムの開発:植生指標CIgreenの異常値検出条件, Nov. 2016, (社)日本リモートセンシング学会, 新潟県新潟市新潟テルサ
MURAMATSU Kanako, (社)日本リモートセンシング学会第61回(平成28年度秋季)学術講演会, 多時期のLandsat-8データを用いた京阪奈地区の竹林の抽出-4, Nov. 2016, (社)日本リモートセンシング学会, 新潟県新潟市新潟テルサ
MURAMATSU Kanako, 日本リモートセンシング学会第59回(平成27年度秋季)学術講演会, 酸素Aバンドを利用した植物蛍光の分光画像計測:森林計測への応用, Nov. 2015, 長崎,長崎大学
MURAMATSU Kanako, 日本リモートセンシング学会第59回学術講演会, 全球土地被覆分類データのための精度検証データ作成 :ボランティアによる情報の利用, Nov. 2015, 長崎, False
MURAMATSU Kanako, 日本リモートセンシング学会第59回学術講演会, 全球の総生産量キャパシティー推定アルゴリズムにおける低ストレス下の総生産量の抽出条件の考察, Nov. 2015, 長崎, False
MURAMATSU Kanako; Soyama, N; Muramatsu, K; Ohashi, I; Daigo, M; Ochiai, F; Tadono, T; Nasahara, K, SPIE remote sensing 2015, A scale-up method for reference data for validation of global land cover maps using ALOS/AVNIR-2 satellite data, Sep. 2015, Toulouse, France, True
MURAMATSU Kanako; Muramatsu, K; Furumi; Daigo, M, SPIE remote sensing 2015, Algorithm developing of gross primary production from it's capacity and a canopy conductance index using flux and global observing satellite data, Sep. 2015, Toulouse, France, True
MURAMATSU Kanako; Soyama, N; Muramatsu, K; Ochiai; F. Daigo, M; Sasai, T; Nasahara, K, 30th International symposium on space technology and science, Validation method of global land cover map using reference data with quality level, Jul. 2015, Kobe, Japan, True
MURAMATSU Kanako, 日本リモートセンシング学会第58回学術講演会, 全球の総生産キャパシティー推定アルゴリズム?ヨーロッパサイトに着目して?, Jun. 2015, 千葉
MURAMATSU Kanako, 日本リモートセンシング学会第58回学術講演会, 多次期のLandsat-8データを用いた京阪奈地区の竹林抽出-III, Jun. 2015, 千葉, False
MURAMATSU Kanako, 日本リモートセンシング学会第58回学術講演会, 最大光利用効率の季節変化推定アルゴリズム, Jun. 2015, 千葉, False
MURAMATSU Kanako, 日本リモートセンシング学会第58回学術講演会, 総生産キャパシティーと気孔開度指標を用いた総生産量推定アルゴリズムの枠組み, Jun. 2015, 千葉, False
MURAMATSU Kanako, 生研フォーラム, 最大光利用効率の季節変化の推定, Mar. 2015, 東京,日本, False
MURAMATSU Kanako, 日本リモートセンシング学会\n第57回(平成26年度秋季)学術講演会, 多時期のLandsat-8データを用いた京阪奈地区の竹林の抽出-2, Nov. 2014, 京都
MURAMATSU Kanako; Kanako Muramatsu; Shinobu Furumi; Noriko Soyama; Motomasa Daigo, SPIE Asis-Pacific remote sensing, 2014, Estimating the seasonal maximum light efficiency, Oct. 2014, Beijing, China
MURAMATSU Kanako; Noriko Soyama; Kanako Muramatsu; Motomasa Daigo; Fumio Ochiao, COSPAR,2014, A study of stratified class design for global land cover classification, Aug. 2014, Moscow, Russia, True
MURAMATSU Kanako; Kanako Muramatsu; Yukiko Mineshita; Noriko Soyama; Motomasa Daigo, COSPAR,2014, An algorithm of gross primary production capacity from GCOM-C1/SGLI, Aug. 2014, Moscow, Russia, True
MURAMATSU Kanako; Kanako MURAMATSU; Yukiko MINESHITA; Shinobu FURUMI; Daigo MOTOMASA, Asia Oceanin Geosciences Society, 2014, An Estimation Method of Capacity of Gross Primary Production from Global Observation Satellite, Jul. 2014, Sapporo, Japan
MURAMATSU Kanako; Noriko SOYAMA; Kanako MURAMATSU; Satomi MANABE; Daigo MOTOMASA; Fumio OCHIAI, Asia Oceanin Geosciences Society, 2014, A Method of Distinguishing Forest Types for Global Land Cover Classification Using Multi-angle Satellite Data, Jul. 2014, Sapporo, Japan
MURAMATSU Kanako, 日本リモートセンシング学会\n第56回(平成26年度春季)学術講演会, 衛星観測による地表面温度データの常緑樹/落葉樹における特徴解析, May 2014, つくば, False
MURAMATSU Kanako, 日本リモートセンシング学会\n第56回(平成26年度春季)学術講演会, 多時期のLandsat-8データを用いた京阪奈地区の竹林の抽出-1, May 2014, つくば, False
MURAMATSU Kanako, 日本リモートセンシング学会第55回学術講演会, 全球の総生産キャパシティ推定アルゴリズムの改良-Shrubに着目して-, Nov. 2013, 福島, False
MURAMATSU Kanako, 日本リモートセンシング学会第55回学術講演会, 針葉樹と落葉樹の分光?多方向反射率特性, Nov. 2013, 福島, False
MURAMATSU Kanako, 日本リモートセンシング学会第55回学術講演会, 衛星観測による植生/非植生における地表面温度の特徴解析, Nov. 2013, 福島, False
MURAMATSU Kanako; Yukiko Mineshita; Kanako Muramatsu; Motomasa Daigo; Noriko Soyama, International symposium on remote sensing, 2013, Estimation of global primary production capacity, May 2013, Chiba, Japan, False
MURAMATSU Kanako, 日本リモートセンシング学会第53回学術講演会, 多方向観測とマルチバンドデータを用いた植生機能タイプの分類方法の考察, Nov. 2012, 日本リモートセンシング学会, 広島, False
MURAMATSU Kanako, 日本リモートセンシング学会第53回学術講演会, 全球の総生産キャパシティ推定の適応性に関する研究, Nov. 2012, 広島, False
MURAMATSU Kanako; Noriko Soyama; Tenri Univ. (Ja; Kanako Muramatsu; Nara Women’s; Univ, SPIE, 2012, Asia-Pasific Remote Sensing, Global land cover classification using annual statistical values, Oct. 2012, KYOTO, JAPAN
MURAMATSU Kanako; Kanako Muramatsu; Juthasinee Thanyapraneedkul; Nara Women’s; Univ. (Japa; Shinobu Furumi; Narasaho College\n(Ja, SPIE, 2012, Asia-Pasific Remote Sensing, Estimating the gross primary production capacity from global observation satellite, Oct. 2012, KYOTO, JAPAN
MURAMATSU Kanako; K. Muramatsu; J. THanyapraneedkul; S. Furumi, 39th COSPAR Assembly, Estimating the Capacity of Gross Primary Production from Global Observation Satellite, Jul. 2012, Mysore, India, True
MURAMATSU Kanako; Soyama N; Muramatsu K; Daigo M, 39th COSPAR Assembly, A simple algorithm for global land cover classification using annual statistical values, Jul. 2012, Mysore, India, True
MURAMATSU Kanako, 日本リモートセンシング学会第52回学術講演会,, 熱赤外画像を用いた気孔開度推定へのアプローチ, May 2012, 日本リモートセンシング学会, 東京, False
MURAMATSU Kanako, 日本生態学会, 熱赤外画像による樹木葉と樹冠の温度分布解析?リモートセンシング技術による気孔開度推定へのアプローチ?, Mar. 2012, 日本生態学会, 札幌, False
MURAMATSU Kanako, 日本リモートセンシング学会第51回学術講演会, 土地被覆分類項目定義の開発者・利用者間の共通認識の形成に向けて: Webデータベースの利用, Nov. 2011, 日本リモートセンシング学会, 弘前, False
MURAMATSU Kanako, 日本リモートセンシング学会第51回学術講演会, ALOS/AVNIR-2データを用いた竹林分布図作成に関する考察II, Nov. 2011, 日本リモートセンシング学会, 弘前, False
MURAMATSU Kanako, 日本リモートセンシング学会第51回学術講演会, 多方向観測による植生構造抽出インデックスの開発, Nov. 2011, 日本リモートセンシング学会, 弘前
MURAMATSU Kanako, 日本リモートセンシング学会第50回学術講演会, ALOS/AVNIR-2データを用いた竹林分布図作成に関する考察,, May 2011, 日本リモートセンシング学会, 東京 日本大学, False
MURAMATSU Kanako, 日本リモートセンシング学会第50回学術講演会, 反射率ベースのパンシャープン処理アルゴリズムII, May 2011, 日本リモートセンシング学会, 東京 日本大学, False
MURAMATSU Kanako, 日本リモートセンシング学会第50回学術講演会, 植生被覆度と植生被覆分布状態に関する一実験, May 2011, 日本リモートセンシング学会, 東京 日本大学
MURAMATSU Kanako; Muramatsu, K; Masugi, K; Soyama, N; Furumi, S; Daigo, M, ISPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8), Vegetation types mapping using ALOS/AVNIR-2 and PRISM data using universal pattern decomposition method, Aug. 2010, KYOTO, Japan
MURAMATSU Kanako; Tang, Y; Huang, X; Muramatsu, K; Zhang, L, ISPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8), Object-oriented change detection for high-resolution imagery using a generic algorithm, Aug. 2010
MURAMATSU Kanako; Soyama, N; Muramatsu, K; Furumi, S; Daigo, M, ISPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8), Development of validation data sets for global land cover classification using ALOS/AVNIL-2 data, Aug. 2010, KYOTO, JAPN, True
MURAMATSU Kanako; Nino, N; Muramatsu, K; Daigo, M; Soyama, N, SPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8),, A study on estimation of tree height in Japanese cedar and Japanese cypress in Nara Using ALOS/PRISM Satellite sensor,, Aug. 2010, KYOTO, Japan
MURAMATSU Kanako; K. Ikegami; K. Muramtsu; M. Daigo; F. Furumi; Y. Honda; K, Kajiwara, ISPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8), Estimating and validation the net primary production aournd Yatsugatake mountain area for GCOM-C/SGLI project, Aug. 2010, KYOTO, JAPAN
MURAMATSU Kanako; J. Thanyapraneedkul, K,Muramatsu; M.Daigo; S, Furumi; N. Soyama, ISPRS Technical Commission VIII Symposium -Networking the World with Remote Sensing, XXXVIII (8),, Improvement of terrestrial GPP estimation algorithm using satellite and FLUX data, Aug. 2010, KYOTO, JAPAN, True
MURAMATSU Kanako; Li Huali; 村松 加奈子; 醍醐 元正; Zhang Liangpei; Li Pingxiang(Wuhan University, 日本リモートセンシング学会第47回学術講演会, Integrated spatial information for automatic endmember extraction algorithm, Nov. 2009, 名古屋, False
MURAMATSU Kanako, 日本リモートセンシング学会第47回学術講演会, GCOM-C/SGLIプロジェクトに向けた八ヶ岳周辺における植生純一次生産量の推定と検証(Ⅱ), Nov. 2009, 名古屋, False
MURAMATSU Kanako; Juthasinee Thanyapraneedkul; 村松 加奈子; 醍醐 元正; 古海忍, 日本リモートセンシング学会第47回学術講演会, Improvement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data, Nov. 2009, 名古屋, False
MURAMATSU Kanako, 日本リモートセンシング学会第47回学術講演会, 奈良県のスギ、ヒノキにおけるALOS/PRISMデータを用いた樹高推定に関する考察2, Nov. 2009, 名古屋
MURAMATSU Kanako; K. Muramatsu; A. Tahara; N.Soyama; S. Furumi; M. Daigo; N. Fujiwara, 30th Asian Conference on Remote Sensing, Vegetation species classification using ALOS/AVNIR-2 data Vegetation species, Oct. 2009, True
MURAMATSU Kanako; Noriko Soyama; Kanako Muramatsu; Shinobu Furumi; Motomasa Daigo; Noboru Fujiwara, the 30th Asian Conference on Remote Sensing, Land Cover Classification of Uganda using ADEOS-II/GLI Mosaic data, Oct. 2009, True
MURAMATSU Kanako; J. Thanyapreneedkul; K. Muramatsu; M. Daigo; N. Soyama; S. Furumi; N. Fujiwara, the 30th Asian Conference of Remote sensing, Improvement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data, Oct. 2009, True
MURAMATSU Kanako, 日本リモートセンシング学会第46回学術講演会, 奈良県東吉野村の森林域および奈良市街域における二酸化炭素濃度の動態解析, May 2009
MURAMATSU Kanako, 日本リモートセンシング学会第46回学術講演会, 奈良県のスギ、ヒノキにおけるALOS/PRISMデータを用いた樹高推定に関する考察, May 2009, 東京
MURAMATSU Kanako; mprovement accuracy of terrestrial NPP; estimation using; ADEOS-II/GLI data (Par; Study on photosynthesis activity; by using FluxNet tower sites dat, 日本リモートセンシング学会第46回学術講演会, mprovement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data (Part 1: Study on photosynthesis activity by using FluxNet tower sites data), May 2009, False
MURAMATSU Kanako, 日本リモートセンシング学会第46回学術講演会, GCOM-C/SGLプロジェクトに向けた八ヶ岳周辺における植生純一次生産量の推定と検証, May 2009, 東京, False
MURAMATSU Kanako, 日本リモートセンシング学会第45回学術講演会, 人工衛星データを用いた全球陸域純一次生産量推定の系統誤差に関する考察, Dec. 2008, 札幌, False
MURAMATSU Kanako; Thanyapraneedkul J; 村松加奈子; 醍醐元正, 日本リモートセンシング学会第45回学術講演会, Improvement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data, Dec. 2008, 札幌, False
MURAMATSU Kanako; Liu T; 村松加奈子; 醍醐元正, 日本リモートセンシング学会第45回学術講演会, Remote sensing image retrieval based on semantic mining, Dec. 2008, 札幌, False
MURAMATSU Kanako, 日本リモートセンシング学会第45回学術講演会, 良県東吉野村におけるCO2濃度の動態解析III, Dec. 2008, 札幌, False
MURAMATSU Kanako, 日本リモートセンシング学会 第45回学術講演会, ADEOS-II/GLI250mモザイクデータを用いたウガンダの土地被覆分類, Dec. 2008, 札幌
MURAMATSU Kanako, 日本リモートセンシング学会, 奈良県における自然環境データベース作成のための植生変動解析--ALOS/AVNIR-2データへのユニバーサルパターン展開法の適用--, May 2008
MURAMATSU Kanako, 日本リモートセンシング学会第43回学術講演会, 奈良県東吉野村におけるCO2濃度の動態解析II, May 2008, 横浜, False
MURAMATSU Kanako; JuthasineeThanyapraneedkul; 村松加奈子; 須崎純一, 日本リモートセンシング学会第43回学術講演会, Estimation of Forest Plantation Productivity Using a Physiologically Based Model Driven with Meteorological Data and Satellite-derived Estimates of Canopy Photosynthetic Capacity., May 2008, 横浜, False
K. Muramatsu; M. Moriyama, COSPAR 2021, 43rd COSPAR Scientific Assembly, Gross primary production estimation algorithm including diurnal changes for satellite sensor data, Oral presentation, 02 Feb. 2021, 28 Jan. 2021, 04 Feb. 2021
前川穂乃香; 村松加奈子, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, 多時期衛星データを用いた奈良県高円山周辺におけるナラ枯れのモニタリング, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
藤原由季; 村松加奈子; 酒井有紀; 松井 淳, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, 現地調査データとパンシャープン画像を用いたナラ枯れ枯死木の抽出-樹冠サイズに注目して-, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
大林真菜; 村松加奈子, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, Landsat8 OLI/TIRS データを用いたインドの野焼き跡地抽出, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
于 琨; 村松加奈子; 曽山典子, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, GCOM-C/SGLI データを用いたインド・パンジャーブ州の野焼きの抽出, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
山本奈央; 村松加奈子; 栗山健二, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, 地上における太陽励起のクロロフィル蛍光の猛暑日での日中変化の観測, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
宮本紗季; 村松加奈子, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, Sentinel-2/MSIデータを用いたクロロフィルインデックスの季節変化の特徴解析, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
澤美和子; 村松加奈子; 曽山典子, 日本リモートセンシング学会第69回(令和2年度秋季)学術講演会, GCOM-C/SGLI データを用いた植生・土壌指数と気象データの関係 -インドの乾燥地における農地モニタリングに向けて-, Oral presentation, 21 Dec. 2020, 21 Dec. 2020, 22 Dec. 2020
村松加奈子, )日本リモートセンシング学会 第67回(令和元年度秋季)学術講演会, Sentinel-2/MSIデータを用いた総生産キャパシティー推定における クロロフィルインデックス の緑とレッドエッジ波長帯の比較, 29 Nov. 2019, 28 Nov. 2019, 29 Nov. 2019
大林 真菜; 村松 加奈子, 日本リモートセンシング学会 第67回(令和元年度秋季)学術講演会, Landsat8衛星データを用いたインドの野焼き抽出方法の検討, Poster presentation, 28 Nov. 2019, 28 Nov. 2019, 29 Nov. 2019
藤原 由季; 村松 加奈子, 日本リモートセンシング学会 第67回(令和元年度秋季)学術講演会, 分光反射特性を保存したパンシャープン画像におけるナラ枯れ分類条件の決定, 28 Nov. 2019, 28 Nov. 2019, 29 Nov. 2019
Kanako Muramatsu, AsiaFlux2019-the 20th anniversary work shop-, GPP capacity estimation algorithm using light response curve in various vegetation types for global observing satellite data, 04 Oct. 2019, 01 Oct. 2019, 05 Oct. 2019
落合史生; 大林真菜; 村松加奈子, 日本リモートセンシング学会 第66回(令和元年度春季)学術講演会, Google Earth Engine を用いたニューデリーの大気汚染と近郊の野焼きとの関連の分析, 05 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
若井愛香; 村松加奈子, 日本リモートセンシング学会 第66回(令和元年度春季)学術講演会, アマゾンの常緑広葉樹林における総生産量キャパシティ推定アルゴリズムのパラメータの決定 -薄い雲の影響を受けた MODIS データの除去-, 05 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
藤原由季; 村松加奈子; 酒井有紀; 松井 淳, 高分解能衛星画像を用いたナラ枯れ分布の解析-パンシャープン処理の適用-, 04 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
森川志美; 村松加奈子, 日本リモートセンシング学会 第66回(令和元年度春季)学術講演会, バングラデシュのシュンドルボンのマングローブ林における JERS-1 データによる 環境変化モニタリングに関する考察, Poster presentation, 04 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
大林真菜; 村松加奈子; 落合史生, 日本リモートセンシング学会 第66回(令和元年度春季)学術講演会, Landsat8 衛星データを用いたインドの野焼き箇所抽出方法, 04 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
山本奈央; 村松加奈子; 栗山健二, 日本リモートセンシング学会 第66回(令和元年度春季)学術講演会, 地上での太陽励起によるクロロフィル蛍光の日中変化の観測, 04 Jun. 2019, 04 Jun. 2019, 05 Jun. 2019
Kanako Muramatsu, 42nd COSPAR Scientific Assembly 2018, AN ALGORITHM OF GROSS PRIMARY PRODUCTION CAPACITY ESTIMATION FROM GLOBAL OBSERVING SATELLITE AND THE DIFFERENCE BETWEEN GPP CAPACITY AND GPP., 20 Jul. 2018, 14 Jul. 2018, 22 Jul. 2018
于 琨; 村松 加奈子, (社)日本リモートセンシング学会 第71回(令和3年度秋季)学術講演会, Sentinel-2データを用いたインド・パンジャーブ州における野焼き箇所の抽出, Oral presentation, 16 Nov. 2021, 15 Nov. 2021, 16 Nov. 2021
宮本 紗季; 村松 加奈子, (社)日本リモートセンシング学会 第71回(令和3年度秋季)学術講演会, 植生指標CIgreen, CIred-edgeを用いた総生産キャパシティー推定アルゴリズム, Oral presentation, 16 Nov. 2021, 15 Nov. 2021, 16 Nov. 2021
澤美和子; 村松加奈子; 曽山典子, (社)日本リモートセンシング学会 第71回(令和3年度秋季)学術講演会, GCOM-C/SGLIデータを用いた地表面温度及び短波長赤外域に関する指標の特徴解析 ー 乾燥農地に着目してー, Oral presentation, 16 Nov. 2021, 15 Nov. 2021, 16 Nov. 2021
M. Sawa; K. Muramatsu; N. Soyama, (社)日本リモートセンシング学会 第70回(令和3年度春季)学術講演会, Relationships between soil index and vegetation cover ratio using GCOM- C/SGLI data -Toward farm monitoring in drylands-, Oral presentation, 18 May 2021, 17 May 2021, 18 May 2021
S. Miyamoto; K. Muramatsu, (社)日本リモートセンシング学会 第70回(令和3年度春季)学術講演会, Algorithm for estimating GPP capacity using the green and red-edge band chlorophyll indices, Oral presentation, 18 May 2021, 17 May 2021, 18 May 2021
K. Muramatsu; M.Moriyama, (社)日本リモートセンシング学会 第70回(令和3年度春季)学術講演会, Use of geostationary meteorological satellite data for estimating midday depression of photosynthesis in dry area, Oral presentation, 18 May 2021, 17 May 2021, 18 May 2021
K. Yu; K. Muramatsu, 日本リモートセンシング学会 第70回(令和3年度春季)学術講演会, Extraction conditions of paddy stubble burning in Punjab, India with Sentinel-2, Oral presentation, 17 May 2021, 18 May 2021
曽山 典子; 森山 雅雄; 村松 加奈子, 日本リモートセンシング学会 第73回(令和4年度秋季)学術講演会, GCOM-C/SGLIデータを使った森林種別と草地の分類-影指数(SDI)の利用-, 29 Nov. 2022