Warning: Undefined array key "HTTP_ACCEPT_LANGUAGE" in E:\rd_system\apps\Apache24\htdocs\search\index.php on line 12
(Advisor to the President)|Researchers' Profile Teacher performance management system

KAGIWADA Satoshi

Advisor to the PresidentAdvisor to the President
Faculty Division of Natural Sciences Research Group of Biological SciencesProfessor
Last Updated :2025/06/13

■researchmap

Profile Information

  • Name (Japanese)

    Kagiwada
  • Name (Kana)

    Satoshi

Research Interests

  • biomembrane, phospholipid, membrane traffic, protein transport, yeast, endoplasmic reticulum, Golgi, lipid transfer protein, phospholipid metabolism, gene expression,

Research Areas

  • Life sciences, Cell biology
  • Life sciences, Molecular biology

Research History

  • Jun. 2016, 奈良女子大学研究院自然科学系・教授
  • Apr. 2006 - May 2016, 奈良女子大学研究院自然科学系・准教授
  • Apr. 1998 - Mar. 2006, 奈良女子大学理学部・助教授
  • Apr. 1997 - Mar. 1998, 科学技術振興事業団研究員
  • May 1995 - Mar. 1997, 理化学研究所基礎科学特別研究員
  • Apr. 1993 - May 1993, 日本学術振興会特別研究員
  • ヒューマンフロンティアサイエンスプログラム長期研究員

Education

  • 1993, Kyoto University, Graduate School, Division of Natural Science, Biophysics
  • 1988, Kyoto University, Faculty of Science

Professional Memberships

  • 日本生化学会
  • 日本分子生物学会
  • American Society for Microbiology
  • 酵母研究会

■Ⅱ.研究活動実績

Published Papers

  • Refereed, Biochemical and Biophysical Research Communications, Elsevier BV, The stability of the Opi1p repressor for phospholipid biosynthetic gene expression in Saccharomyces cerevisiae is dependent on its interactions with Scs2p and Ino2p, Ayaka Oshima; Ayu Joho; Masako Kuwahara; Satoshi Kagiwada, Nov. 2024, 735, 150849, 150849, Scientific journal, 10.1016/j.bbrc.2024.150849
  • Journal of Fungi, MDPI AG, The Fission Yeast RNA-Binding Protein Meu5 Is Involved in Outer Forespore Membrane Breakdown during Spore Formation, Bowen Zhang; Erika Teraguchi; Kazuki Imada; Yuhei O. Tahara; Shuko Nakamura; Makoto Miyata; Satoshi Kagiwada; Taro Nakamura, In Schizosaccharomyces pombe, the spore wall confers strong resistance against external stress. During meiosis II, the double-layered intracellular forespore membrane (FSM) forms de novo and encapsulates the nucleus. Eventually, the inner FSM layer becomes the plasma membrane of the spore, while the outer layer breaks down. However, the molecular mechanism and biological significance of this membrane breakdown remain unknown. Here, by genetic investigation of an S. pombe mutant (E22) with normal prespore formation but abnormal spores, we showed that Meu5, an RNA-binding protein known to bind to and stabilize more than 80 transcripts, is involved in this process. We confirmed that the E22 mutant does not produce Meu5 protein, while overexpression of meu5+ in E22 restores the sporulation defect. Furthermore, electron microscopy revealed that the outer membrane of the FSM persisted in meu5∆ spores. Investigation of the target genes of meu5+ showed that a mutant of cyc1+ encoding cytochrome c also showed a severe defect in outer FSM breakdown. Lastly, we determined that outer FSM breakdown occurs coincident with or after formation of the outermost Isp3 layer of the spore wall. Collectively, our data provide novel insights into the molecular mechanism of spore formation., 13 Nov. 2020, 6, 4, 284, 284, Scientific journal, 10.3390/jof6040284
  • Refereed, JOURNAL OF BIOCHEMISTRY, Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation, Miki Masuda; Ayaka Oshima; Tetsuko Noguchi; Satoshi Kagiwada, Mar. 2016, 159, 3, 351, 361, Scientific journal, 10.1093/jb/mvv105
  • Refereed, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast, Yuta Tsukamoto; Satoshi Kagiwada; Sayuri Shimazu; Kaoru Takegawa; Tetsuko Noguchi; Masaaki Miyamoto, Mar. 2015, 458, 4, 802, 809, Scientific journal, 10.1016/j.bbrc.2015.02.031
  • Refereed, Algal Research, Colony sheath formation is accompanied by shell formation and release in the green alga Botryococcus braunii (race B), KAGIWADA Satoshi; Uno, Y; Nishii, I; Noguchi, T, Feb. 2015, 8, 214-223
  • Refereed, JOURNAL OF CELL SCIENCE, Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast, Kentaro Kajiwara; Atsuko Ikeda; Auxiliadora Aguilera-Romero; Guillaume A. Castillon; Satoshi Kagiwada; Kentaro Hanada; Howard Riezman; Manuel Muniz; Kouichi Funato, Jan. 2014, 127, 2, 376, 387, Scientific journal, 10.1242/jcs.132001
  • Refereed, Experimental Eye Research, Academic Press, Immediate differentiation of neuronal cells from stem/progenitor-like cells in the avian iris tissues, Tamami Matsushita; Ai Fujihara; Lars Royall; Satoshi Kagiwada; Mitsuko Kosaka; Masasuke Araki, 2014, 123, 16, 26, Scientific journal, 10.1016/j.exer.2014.04.007
  • Refereed, PLoS ONE, Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (race B), Reiko Suzuki; Naoko Ito; Yuki Uno; Ichiro Nishii; Satoshi Kagiwada; Sigeru Okada; Tetsuko Noguchi, 05 Dec. 2013, 8, 12, e81626, Scientific journal, 10.1371/journal.pone.0081626
  • Refereed, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, Human VAPA and the yeast VAP Scs2p with an altered proline distribution can phenocopy amyotrophic lateral sclerosis-associated VAPB(P56S), Shoko Nakamichi; Kumiko Yamanaka; Mai Suzuki; Toshio Watanabe; Satoshi Kagiwada, Jan. 2011, 404, 2, 605, 609, Scientific journal, 10.1016/j.bbrc.2010.12.011
  • Refereed, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, The yeast VAP homolog Scs2p has that is correlated a phosphoinositide-binding ability with its activity, Satoshi Kagiwada; Misa Hashimoto, Dec. 2007, 364, 4, 870, 876, Scientific journal, 10.1016/j.bbrc.2007.10.079
  • Refereed, Marine Biotechnology, Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21., KAGIWADA Satoshi; Morita E; Kumon Y; Nakahara T; Noguchi T, May 2006, 8, 3, 319-327, 327
  • Refereed, PLANT SCIENCE, Characterization of coat proteins of COPI- and clathrin-coated vesicles in the unicellular green alga Botryococcus braunii, S Kagiwada; S Sugita; Y Masaike; S Kato; T Noguchi, Oct. 2005, 169, 4, 668, 679, Scientific journal, 10.1016/j.plantsci.2005.05.027
  • Refereed, PLANT SCIENCE, Cytoskeleton-dependent polarized secretion of arylsulfatase in the unicellular green alga, Chlamydomonas reinhardtii, S Kagiwada; Nakamae, I; M Kayukawa; S Kato, Jun. 2004, 166, 6, 1515, 1524, Scientific journal, 10.1016/j.plantsci.2004.02.003
  • Refereed, JOURNAL OF BIOCHEMISTRY, Role of the yeast VAP homolog, Scs2p, in INO1 expression and phospholipid metabolism, S Kagiwada; R Zen, Apr. 2003, 133, 4, 515, 522, Scientific journal, 10.1093/jb/mvg068
  • Refereed, JOURNAL OF BIOCHEMISTRY, Effect of brefeldin A on melatonin secretion of chick pineal cells, T Hirota; S Kagiwada; T Kasahara; T Okano; M Murata; Y Fukada, Jan. 2001, 129, 1, 51, 59, Scientific journal
  • Refereed, MOLECULAR BIOLOGY OF THE CELL, Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: Relationship to "bypass sec14p" and inositol auxotrophy, MP Rivas; BG Kearns; ZG Xie; SL Guo; MC Sekar; K Hosaka; S Kagiwada; JD York; VA Bankaitis, Jul. 1999, 10, 7, 2235, 2250, Scientific journal
  • Seibutsu Butsuri, The Biophysical Society of Japan General Incorporated Association, Inhibition of metatonin synthesis in chick pineal cells by pulse treatment with brefeldin A, Hirota T.; Kagiwada S.; Kasahara T.; Okano T.; Fukada Y.; Murata M., 1999, 39, S48, 10.2142/biophys.39.S48_1
  • Refereed, JOURNAL OF BACTERIOLOGY, The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism, S Kagiwada; K Hosaka; M Murata; J Nikawa; A Takatsuki, Apr. 1998, 180, 7, 1700, 1708, Scientific journal
  • Refereed, NATURE, Essential role for diacylglycerol in protein transport from the yeast Golgi complex, BG Kearns; TP McGee; P Mayinger; A Gedvilaite; SE Phillips; S Kagiwada; VA Bankaitis, May 1997, 387, 6628, 101, 105, Scientific journal
  • Refereed, EMBO JOURNAL, Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis, M Fang; BG Kearns; A Gedvilaite; S Kagiwada; M Kearns; MKY Fung; VA Bankaitis, Dec. 1996, 15, 23, 6447, 6459, Scientific journal
  • Refereed, GENETICS, The yeast BSD2-1 mutation influences both the requirement for phosphatidylinositol transfer protein function and derepression of phospholipid biosynthetic gene expression in yeast, S Kagiwada; BG Kearns; TP McGee; M Fang; K Hosaka; VA Bankaitis, Jun. 1996, 143, 2, 685, 697, Scientific journal
  • Refereed, BIOCHIMICA ET BIOPHYSICA ACTA, FUSION OF DIOLEOYLPHOSPHATIDYLCHOLINE VESICLES INDUCED BY AN AMPHIPHILIC CATIONIC PEPTIDE AND OLIGOPHOSPHATES AT NEUTRAL PH, M MURATA; Y SHIRAI; R ISHIGURO; S KAGIWADA; Y TAHARA; S OHNISHI; S TAKAHASHI, Oct. 1993, 1152, 1, 99, 108, Scientific journal
  • Refereed, BIOPHYSICAL JOURNAL, SPECIFICITY OF AMPHIPHILIC ANIONIC PEPTIDES FOR FUSION OF PHOSPHOLIPID-VESICLES, M MURATA; S TAKAHASHI; Y SHIRAI; S KAGIWADA; R HISHIDA; S OHNISHI, Mar. 1993, 64, 3, 724, 734, Scientific journal
  • Refereed, JOURNAL OF BIOLOGICAL CHEMISTRY, INVITRO FUSION OF RABBIT LIVER GOLGI MEMBRANES WITH LIPOSOMES, S KAGIWADA; M MURATA; R HISHIDA; M TAGAYA; S YAMASHINA; S OHNISHI, Jan. 1993, 268, 2, 1430, 1435, Scientific journal
  • Refereed, BIOCHEMISTRY, PH-DEPENDENT MEMBRANE-FUSION AND VESICULATION OF PHOSPHOLIPID LARGE UNILAMELLAR VESICLES INDUCED BY AMPHIPHILIC ANIONIC AND CATIONIC PEPTIDES, M MURATA; S TAKAHASHI; S KAGIWADA; A SUZUKI; S OHNISHI, Feb. 1992, 31, 7, 1986, 1992, Scientific journal
  • Refereed, BIOLOGY OF THE CELL, INTERACTION OF THE GOLGI MEMBRANES ISOLATED FROM RABBIT LIVER WITH MICROTUBULES INVITRO, M MURATA; TJ ITOH; S KAGIWADA; R HISHIDA; H HOTANI; S OHNISHI, 1992, 75, 2, 127, 134, Scientific journal
  • Refereed, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, MODIFICATION OF THE N-TERMINUS OF MEMBRANE FUSION-ACTIVE PEPTIDES BLOCKS THE FUSION ACTIVITY, M MURATA; S KAGIWADA; R HISHIDA; R ISHIGURO; S OHNISHI; S TAKAHASHI, Sep. 1991, 179, 2, 1050, 1055, Scientific journal
  • Refereed, JOURNAL OF BIOLOGICAL CHEMISTRY, MEMBRANE-FUSION INDUCED BY MUTUAL INTERACTION OF THE 2 CHARGE-REVERSED AMPHIPHILIC PEPTIDES AT NEUTRAL PH, M MURATA; S KAGIWADA; S TAKAHASHI; SI OHNISHI, Aug. 1991, 266, 22, 14353, 14358, Scientific journal
  • Refereed, BIOCHEMISTRY, DEVELOPMENT OF A STREAK-CAMERA-BASED TIME-RESOLVED MICROSCOPE FLUOROMETER AND ITS APPLICATION TO STUDIES OF MEMBRANE-FUSION IN SINGLE CELLS, A KUSUMI; A TSUJI; M MURATA; Y SAKO; AC YOSHIZAWA; S KAGIWADA; T HAYAKAWA; S OHNISHI, Jul. 1991, 30, 26, 6517, 6527, Scientific journal
  • Refereed, TIME-RESOLVED LASER SPECTROSCOPY IN BIOCHEMISTRY II, PTS 1 AND 2, DEVELOPMENT OF TIME-RESOLVED MICROFLUORIMETRY AND ITS APPLICATION TO STUDIES OF CELLULAR MEMBRANES, A KUSUMI; A TSUJI; M MURATA; Y SAKO; S KAGIWADA; T HAYAKAWA; SI OHNISHI, 1990, 1204, 776, 783, International conference proceedings, 10.1117/12.17720
  • Nov. 2020, 6, 4, 280, https://doi.org/10.3390/jof6040284

MISC

  • Not Refereed, PHYCOLOGIA, BIOSYNTHESIS AND ACCUMULATION OF HYDROCARBONS AND POLYSACCHARIDES IN A COLONIAL GREEN ALGA, BOTRYOCOCCUS BRAUNII RACE B, R. Suzuki; Y. Uno; I. Nishii; S. Kagiwada; T. Noguchi, Jul. 2013, 52, 4, 109, 109, Summary international conference
  • Not Refereed, 生化学, (公社)日本生化学会, ブレフェルジンAを用いたニワトリ松果体細胞のメラトニン分泌機構の解析, 広田 毅; 鍵和田 聡; 笠原 和起; 岡野 俊行; 村田 昌之; 深田 吉孝, Aug. 2000, 72, 8, 1016, 1016
  • Not Refereed, 酵母におけるイノシトールリン脂質の機能, KAGIWADA Satoshi, Jun. 1999, 44, 8, 1194-1199, 1199
  • Not Refereed, KAGAKU TO SEIBUTSU, Japan Society for Bioscience, Biotechnology, and Agrochemistry, リン脂質輸送タンパク質の新しい機能, KAGIWADA Satoshi, Oct. 1996, 34, 7, 433-439, 439, 10.1271/kagakutoseibutsu1962.34.433
  • Not Refereed, 細胞内蛋白質輸送におけるリン脂質輸送タンパク質の新しい機能, KAGIWADA Satoshi, Aug. 1996, 14, 14, 2058-2064, 2064
  • Not Refereed, 細胞内の膜小胞形成に関与する蛋白質, KAGIWADA Satoshi, Oct. 1992, 32, 5, 268-272
  • Not Refereed, 細胞内小胞輸送を制御する蛋白質, KAGIWADA Satoshi, Dec. 1991, 23, 12, 475-479
  • Not Refereed, 新しい物理化学的手法によるエンドサイトーシス機構の解析, KAGIWADA Satoshi, Jul. 1991, 17, 7, 220-224
  • Not Refereed, Seibutsu Butsuri, The Biophysical Society of Japan General Incorporated Association, 膜融合活性ペプチドのマイクロマニュピレーションとその応用, KAGIWADA Satoshi, Dec. 1989, 29, 6, 316-319, 319, 10.2142/biophys.29.6_316
  • Not Refereed, 膜小胞化と膜融合, KAGIWADA Satoshi, Nov. 1989, 21, 11, 416-420

Books etc

  • Phospholipid transfer protein function in the yeast Saccharomyces cerevisiae., Plenum Press, KAGIWADA Satoshi; M.A.Kearns; M.Fang; M.Rivas; B.G.Kearns; V.A.Bankaitis, Aug. 1996, 83-91, Not Refereed
  • Phospholipid transfer proteins: emerging roles in vesicle trafficking, signal transduction, and metabolic regulation, Springer-Verlag, KAGIWADA Satoshi, 1996, Not Refereed

Presentations

  • Oral presentation, 06 Mar. 2025
  • Poster presentation, 27 Nov. 2024
  • 15 Mar. 2024
  • 01 Nov. 2023
  • 14 Mar. 2023, 14 Mar. 2023 - 17 Mar. 2023
  • 01 Dec. 2022
  • Nanasa Ieda; Satoshi Kagiwada, Pil1, 03 Dec. 2021, 01 Dec. 2021 - 03 Dec. 2021
  • KAGIWADA Satoshi; Izumi Mizutani; Shigeru Okada; Satoshi Kagiwada, Excretion of triterpenes overproduced in the yeast Saccharomyces cerevisiae into the cell wall fraction, Mar. 2019, False
  • KAGIWADA Satoshi; Shuko Nakamura; Satoshi Kagiwada, Morphological analysis of a nuclear membrane domain necessary for the Opi1p-induced membrane invagination in the yeast Saccharomyces cerevisiae., Mar. 2019, False
  • KAGIWADA Satoshi; Tsou ChungYau; Victor Ferriols; Satoshi Kagiwada; Shigeki Matsunaga; Shigeru Okada, 平成29年度日本水産学会春季大会, Functional characterization of a unique squalene epoxidase from the freshwater alga Botryococcus braunii, race B, Mar. 2018, False
  • KAGIWADA Satoshi, 緑藻Botryococcus brauniiのトリテルペン炭化水素合成酵素の出芽酵母Saccharomyces cerevisiaeを用いた機能解析, Mar. 2017, False
  • KAGIWADA Satoshi; Tsou ChungYau; Victor Ferriols; Satoshi Kagiwada; Shigeki Matsunaga; Shigeru Okada, The 2017 Spring Meeting of JSFS, cDNA cloning, yeast expression, and functional characterization of 10,11-squalene epoxidase from the freshwater alga Botryococcus braunii, race B, Mar. 2017, False
  • KAGIWADA Satoshi, 出芽酵母Saccharomyces cerevisiaeにおけるリン脂質生合成遺伝子発\n現の負の調節因子Opi1pは正の調節因子Ino2pを分解することで遺伝子発現を抑制\nする, Dec. 2015, False
  • KAGIWADA Satoshi, Botryococcus braunii B品種におけるスクアレンエポキシダーゼ遺伝子群の\n単離と機能解析, Aug. 2015, False
  • KAGIWADA Satoshi, 緑藻Botryococcus由来炭化水素(Botryococcene)生産酵母での細胞内脂質蓄積部位の形態, Sep. 2014, False
  • KAGIWADA Satoshi, 緑藻Botryococcus brauniiのトリテルペン合成酵素群の出芽酵母での発現と細胞内局在, Sep. 2013, False
  • KAGIWADA Satoshi; Suzuki, R; Uno, Y; Nishii, I; Kagiwada, S; Noguchi, T, 10th International Phycological Congress Annual Meeting, Biosynthesis and accumulation of hydrocarbons and polysaccharides in a colonial green alga, Botryococcus braunii race B, Aug. 2013, Orlando, USA, True
  • KAGIWADA Satoshi; Yuki Uno; Reiko Suzuki; Naoko Ito; nSatoshi Kagiwada; Ichiro Nishii; Tetsuko Noguchi, 第54回日本植物生理学会年会, Biosynthesis and accumulation of lipids and polysaccharides in a colonial\ngreen alga, Botryococcus braunii race B, Mar. 2013, False
  • KAGIWADA Satoshi; Ayaka Oshima; Risa Yokoi; Miki Masuda; Satoshi Kagiwada, Abundance of the Opi1p transcriptional factor involved in the transcriptional regulation of phospholipid biosynthetic genes is regulated by its binding to membranes in Saccharomyces cerevisiae, Dec. 2012, False
  • KAGIWADA Satoshi; Nodoka Miyake; Shoko Nakamichi; Satoshi Kagiwada, Multi-layered ER induced by ALS-8 type Scs2p can be dissolved by modulating phospholipid metabolism in the yeast Saccharomyces cerevisiae, Dec. 2012, False
  • KAGIWADA Satoshi, 緑藻Botryococcus braunii B品種における脂質の分泌に伴うオイルボディの動態, Sep. 2012, False
  • KAGIWADA Satoshi; Mana Hirose; Satoshi Kagiwada; Ichiro Nishii; Tetsuko Noguchi, The 2nd International Conference on Algal Biomass, Biofuels and Bioproducts, Hydrocarbon biosynthesis and secretion in a green alga, Botryococcus braunii, Jun. 2012, San Diego, USA, True
  • KAGIWADA Satoshi; Miki Masuda; Shoko Nakamichi; Satoshi Kagiwada, Localization of Opi1p, a negative transcriptional factor for the inositol biosynthetic gene INO1, in Saccharomyces cerevisiae., Dec. 2011, False
  • KAGIWADA Satoshi; Ayaka Oshima; Shoko Nakamichi; Risa Yokoi; Satoshi Kagiwada, The expression of the OPI1 negative transcriptional factor for phospholipid synthetic genes is regulated by the Opi1p-associated nuclear/ER membrane protein Scs2p in Saccharomyces cerevisiae., Dec. 2011
  • KAGIWADA Satoshi, 緑藻Botryococcus braunii B品種における炭化水素生産について, Sep. 2011

Research Projects

  • 基盤研究(C), Apr. 2022 - Mar. 2025, 22K04842, 細胞壁自己消化性酵母を用いたスクアレン回収システムの構築, 鍵和田 聡, 日本学術振興会, 科学研究費助成事業 基盤研究(C), 奈良女子大学, 4290000, 3300000, 990000, kaken
  • Grant-in-Aid for Challenging Exploratory Research, 01 Apr. 2012 - 31 Mar. 2014, 24658289, Engineering of a hydrocarbon producing yeast for biofuel production, KAGIWADA Satoshi, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Nara Women's University, 3380000, 2600000, 780000, A unicellular green algae, Botryococcus braunii, secretes a hydrocarbon called botryococcene, which is very suitable for biofuel production, into its environment. However, Botryococcus do not grow fast and is not subjected to biotechnological engineering, making it difficult to improve this organism for more efficient biofuel production.
    In this study, genes required for botryococcene synthesis are incorporated into the budding yeast Saccharomyces cerevisiae, which is very suitable for biotechnological engineering, to make a yeast strain which can prouduce large amounts of botryococcene and secrete them., kaken
  • 萌芽研究, 2003 - 2004, 15657016, 海洋微生物ラビリンチュラのドコサヘキサエン酸生成に関する細胞学的解析, 野口 哲子; 鍵和田 聡, 日本学術振興会, 科学研究費助成事業, 奈良女子大学, 3200000, 3200000, ラビリンチュラ類は卵菌と不等毛植物の特徴を持つ汽水域に生息する単細胞生物である。Schizochytrium limacinum 21株(SR21株)は多量の脂肪酸を細胞内に蓄積し、なかでも高度不飽和脂肪酸のドコサヘキサエン酸(DHA)を多量に生成する微生物として、近年注目されている。本研究では、SR21株のDHA生成を細胞学的に解析した。まず、SR21株の同調培養系を確立し、100%の遊走子群を得た。この系を用い、遊走子及び遊走子着床後4、8、12、24時間、10日目の栄養細胞で、オイルボディーの形成過程を形態学的に観察し、それに伴う脂質量、及び脂肪酸組成の変化を解析した。
    Nile red染色によって生活史の全ての時期にオイルドロップが観察されたが、オイルドロップは遊走子着床後の細胞成長に伴って大きくなり、細胞当たりの数も増加した。電子顕微鏡観察では、パルミチン酸を1、3位に、DHAを2位に持つトリアシルグリセロール(TG)の結晶様構造による縞模様を呈するオイルボディーが観察された。このタイプのオイルボディーは遊走子では余り観察されず、成長中の細胞で出現し、12時間目で細胞質の1/2以上を占めた。成長中の細胞では、小さなオイルボディーが小胞体に接し、小胞体内には観察されないため、オイルボディーは小胞体上で合成されると考えられた。
    細胞生長に伴い細胞当たりの脂質量も増加したが、総脂肪酸中のDHAの比率は24時間目以降低下した。そこで脂質を、主にオイルボディーの構成成分であるTGと生体膜成分であるホスファチジルコリン(PC)に分画し、それぞれの脂肪酸組成を解析した。その結果、遊走子及び着床後24時間目の細胞では、PCにおけるDHAの脂肪酸組成がおよそ60%であったのに対し、10日後には10%以下に低下した。一方、TGではDHAの脂肪酸組成に大きな変動は認められなかった。, kaken
  • Grant-in-Aid for Scientific Research (C), 2001 - 2002, 13640665, Cytological studies on the mechanism of hydrocarbon synthesis by a green alga, Botryococcus braunii, NOGUCHI Tetsuko; KAGIWADA Satoshi, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Nara women's University, 3400000, 3400000, The colonial green alga Botryococcus braunii produces unusually high levels of hydrocarbons, amounting to 30%-60% of its dry weight, and accumulates them around the cell surfaces. Usually, the hydrocarbon synthesis occurrs just after cell division but before the formation of polysaccharide cell wall. In this study, we developed the induction-system of interphase cells into an active hydrocarbon synthesis. Active hydrocarbon synthesis occurred after the digestion of cell walls in interphase cells (spheroplasts), but didn't occur by the removal of already accumulated hydrocarbons. Maximally, we could induce 12 times of hydrocarbon synthesis by spheroplasts than those by normal interphase cells. The morphologies of Golgi bodies and the trans-Golgi networks (TGN) in spheroplasts were not similar to those in normal interphase cells, but those in cells just after cell division. The result strongly supports our hypothesis that the TGN is participated in the hydrocarbon synthesis. Then, we have isolated a cDNA coding for β-COP that is a coat-protein of transport vesicles mediating the vesicular transport through the Golgi apparatus and the TGN. The cDNA encodes a protein of 947 amino acids with a predicted molecular mass of 109 kDa. Immunoelectron microscopic analysis was also carried out with the anti-body against β-COP. To produce spheroplasts of B. braunii, we examined the polysaccharide and sugar compositions of the cell wall, and it was clarified that B.braunii had a characteristic one., kaken
  • 奨励研究(A), 2000 - 2001, 12780474, 酵母のイノシトールリン脂質の低温耐性および細胞内膜小胞輸送における役割の解明, 鍵和田 聡, 日本学術振興会, 科学研究費助成事業, 奈良女子大学, 2400000, 2400000, 酵母(Saccharomyces cerevisiae)のSCS2遺伝子産物は、細胞内膜小胞輸送に関与する膜蛋白質であるシナプトブレビンに結合する蛋白質としてラットやマウスなどで発見されたVAP-33と相同性がある。一方、この遺伝子を破壊した酵母はイノシトール要求性や低温耐性を示す。これらの表現型と他の遺伝子との遺伝学的相互作用の結果から、SCS2遺伝子破壊株ではイノシトールリン脂質の代謝に異常があり、それが結果として低温耐性を引き起こすと考え、この関係の分子的要因を明らかにするためにSCS2遺伝子産物の機能解明を試みた。
    本研究ではまずSCS2破壊株のイノシトール要求性を与える要因を明らかにしようとし、SCS2破壊株では酵母のイノシトール生合成に必須の遺伝子であるINO1遺伝子の発現量が野性株に比べて明らかに低下していたこと、しかし、外来プラスミドに挿入したINO1プロモーターからの遺伝子発現はほぼ正常であったことを明らかにした。このことから、SCS2遺伝子産物は染色体に働きかけてINO1プロモーターからの遺伝子発現を正に調節するタンパク質であることが示唆された。一方、SCS2遺伝子破壊株のイノシトール要求性は、ホスファチジルコリン生合成のためのCDPコリン経路に位置する遺伝子を破壊すると回復するが、もうひとつのPC生合成経路であるPEメチル化経路を破壊しても回復しないことを明らかにした。
    また、SCS2破壊株のリン脂質と中性脂質組成を調べたところ、この破壊株には他のリン脂質代謝変異株に見られたような野性株との大きな相違は観察されなかった。ただし、34℃で生育させたときにイノシトールの代謝が盛んになることを明らかにしたことから、SCS2岐壊株でみられた高温感受性のイノシトール要求性は高温でのイノシトール代謝昂進にイノシトール生合成が追いつかなくなったためと推測された。, kaken
  • Grant-in-Aid for Scientific Research (C), 1999 - 2000, 11640664, Hydrocarbon synthesis in a green alga, Botryococcus braunii., NOGUCHI Tetuko; KAGIWADA Satoshi, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Nara Women's University, 3000000, 3000000, The green alga Botryococcus. braunii produce unusually high levels of hydrocarbons, 15-75% of the cell dry weight It makes B.braunii as excellent candidate for a renewable source of liquid hydrocarbon fuel as a "solar oil". In this study, the mechanism of hydrocarbon synthesis was studied cytologically. The structure of hydrocarbons was examined by gas chromatography mass spectrometer. They were straight odd number_7 C_<29> (35%) and C_<31> (26%) chains with two double bonds. The stage of hydrocarbon synthesis during the cell cycle was determined by the incorporation of [1-^<14>C] acetate into hydrocarbons and the observations on ultrastructures of cell organelle by the cryo-freezing/freeze-substitution for electron microscopy. The results showed that the hydrocarbon synthesis occurred just after cell division but before cell wall formation. When the hydrocarbon synthesis occurs, the trans-Golgi networks produced special very large vesicles that contained fine fibrils and several masses of electron-dense substance. Cytochalasin B treatment results the appearance of hydrocarbon droplets outside the plasma membrane of cells just after cell division, which showed that the hydrocarbon synthesis occurs on the plasma membrane., kaken
  • 生体膜の構造と機能に関する分子生物学的研究, 0, 0, 0, Competitive research funding
  • Structure and function of biomembrane, 0, 0, 0, Competitive research funding