Researchers Database

MORITOH Shinya

    Faculty Division of Natural Sciences Research Group of Mathematics Professor
Last Updated :2021/07/07

researchmap

Research Areas

  • Natural sciences, Basic analysis

Research Experience

  • Apr. 2012, 奈良女子大学研究院自然科学系数学領域教授
  • Aug. 2011 Mar. - 2012, 奈良女子大学理学部教授
  • Apr. 2007 Jul. - 2011, 奈良女子大学理学部准教授
  • Apr. 2004 Mar. - 2007, 奈良女子大学理学部助教授
  • Aug. 1996 Mar. - 2004, 奈良女子大学理学部講師
  • Apr. 1995 Jul. - 1996, 奈良女子大学理学部助手

Education

  • - 1993, The University of Tokyo, Graduate School, Division of Mathematical Sciences, 数理科学
  • - 1991, The University of Tokyo, Faculty of Science, 数学

Committee Memberships

  • Mar. 2017 Feb.2019日本数学会全国区代議員(実函数論分科会)

Published Papers

  • Further research on wavelet inversion formula

    S.Moritoh; N.Takemoto

    Mar. 2018, Annual Report of Graduate School of Human Culture, Nara Women's Univ., 33, 107 - 111

    Research institution

  • Detection of singularities in wavelet and ridgelet analyses

    MORITOH Shinya

    2016, RIMS Kokyuroku Bessatsu, B57, 1 - 13

  • COMPARISON OF INTEGRAL AND DISCRETE OSTROWSKI'S INEQUALITIES IN THE PLANE

    Shinya Moritoh; Yumi Tanaka

    A comparison of integral and discrete Ostrowski's inequalities in the plane is considered. An integral inequality is described by Legendre's elliptic integrals. A natural discrete analogue of the inequality is also given. The main point is to find a suitable decomposition of the radius in polar coordinates., ELEMENT, Jan. 2015, MATHEMATICAL INEQUALITIES & APPLICATIONS, 18 (1), 125 - 132, doi;web_of_science

    Scientific journal

  • A Further Decay Estimate for the Dziubanski-Hernandez Wavelets

    Shinya Moritoh; Kyoko Tomoeda

    We give a further decay estimate for the Dziubanski-Hernandez wavelets that are band-limited and have subexponential decay. This is done by constructing an appropriate bell function and using the Paley-Wiener theorem for ulltradifferentiable functions., CANADIAN MATHEMATICAL SOC, Mar. 2010, CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 53 (1), 133 - 139, doi;web_of_science

    Scientific journal

  • An integral representation formula for logarithmic potentials and embeddings of Bessel-potential spaces

    Shinya Moritoh; Yumi Tanaka

    We give an integral representation formula for logarithmic Riesz potentials. This plays an essential role in proving the sharpness of the embeddings of Bessel-potential spaces, which have logarithmic exponents both in the smoothness and ill the underlying Lorentz-Zygmund spaces. These results are natural extensions of those obtained by Edmunds, Gurka, Opic and Trebels., ROYAL SOC EDINBURGH, 2009, PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 139, 541 - 549, web_of_science

    Scientific journal

  • Interpolation theorem on Lorentz spaces over weighted measure spaces

    S Moritoh; M Niwa; T Sobukawa

    In 1997 Ferreyra proved that it is impossible to extend the Stein-Weiss theorem in the context of Lorentz spaces. In this paper we obtain an interpolation theorem on Lorentz spaces over weighted measure spaces., AMER MATHEMATICAL SOC, 2006, PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 134 (8), 2329 - 2334, web_of_science

    Scientific journal

  • Two-microlocal Besov spaces and wavelets

    S Moritoh; T Yamada

    We give a characterization of the two-microlocal Besov spaces in terms of the local Besov type conditions. As an easy consequence, we obtain the inclusions between the two-microlocal Besov spaces and the local Besov spaces. These results are natural extensions of those obtained by Jaffard and Meyer, who treated the pointwise Holder regularity in terms of two-microlocal estimates. The Daubechies wavelets play a key role throughout the paper., UNIVERSIDAD AUTONOMA MADRID, 2004, REVISTA MATEMATICA IBEROAMERICANA, 20 (1), 277 - 283, web_of_science

    Scientific journal

  • Interpolation theorems for block-Lorentz spaces

    A.Gogatishvili; S.Moritoh; M.Niwa; T.Sobukawa

    2004, Banach and function spaces, Yokohama Publ., Yokohama, 215 - 223

    Scientific journal

  • An approach to Marcinkiewicz type interpolation theorem on weighted Lorentz spaces

    S.Moritoh; M.Niwa

    2000, Annual Report of Graduate School of Human Culture, Nara Women's Univ., 16, 259 - 265

    Research institution

  • Wavelet transforms and operators in various function spaces

    S.Moritoh

    1997, New trends in microlocal analysis (Tokyo, 1995), Springer, Tokyo, 59 - 68

  • Wavelet transforms in Euclidean spaces - Their relation with wave front sets and Besov, Triebel-Lizorkin spaces

    S. Moritoh

    We define a class of wavelet transforms as a continuous and microlocal version of the Littlewood-Paley decompositions. Hormander's wave front sets as well as the Besov and Triebel-Lizorkin spaces may be characterized in terms of our wavelet transforms., TOHOKU UNIVERSITY MATHEMATICAL INSTITUTE, Dec. 1995, TOHOKU MATHEMATICAL JOURNAL, 47 (4), 555 - 565, web_of_science

    Scientific journal

  • Wavelet transforms in R(n) - Wave front sets and Besov, Triebel-Lizorkin spaces

    S. MORITOH

    VSP BV, 1995, PROCEEDINGS OF THE FIFTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 257 - 265, web_of_science

    International conference proceedings

MISC

  • ラドン変換とその応用

    森藤紳哉

    2004, 数学と物理学の研究交流シンポジウム 報告書, 6 - 9

    Meeting report

  • 北廣男:オーリッチ空間とその応用,岩波数学叢書,2009

    森藤紳哉

    2012, 数学, 64 (4), 415 - 420

    Book review

  • 連載 ICM 98,部門別報告 解析学

    森藤紳哉

    1999, 数学, 51 (2), 197 - 200

    Meeting report

  • Two-microlocal estimates in wavelet theory and related function spaces

    S. Moritoh

    Apr. 2021, Multidimensional Stockwell transform and timefrequency analysis, RIMS Kôkyûroku

  • Embeddings of Bessel-potential spaces, and Lorentz-Karamata spaces

    S.Moritoh

    2012, 実解析学シンポジウム 2011, 43, 32 - 36

  • Radon transform and its application

    S.Moritoh

    2011, 実解析学シンポジウム 2010, 42, 55 - 56

  • FBI transforms and function spaces. (Japanese)

    S.Moritoh

    2000, Harmonic analysis and nonlinear partial differential equations (Japanese) (Kyoto, 1999), RIMS Kôkyûroku, 1162, 36 - 42

  • Wavelet transforms and harmonic analysis (on a spherical surface). (Japanese)

    S.Moritoh

    1998, Harmonic analysis and nonlinear partial differential equations (Japanese) (Kyoto, 1997), RIMS Kôkyûroku, (1059), 36-39

  • Wavelet transforms and pseudodifferential operators

    S.Moritoh

    1996, Generalized functions and differential equations (Japanese) (Kyoto, 1994), RIMS Kôkyûroku, (935), 87-102

  • Microlocal property of pseudodifferential operators in case of wave front sets defined by wavelet transforms

    S.Moritoh

    1996, Vanishing cycles of $D$-modules and their applications (Japanese) (Kyoto, 1994), RIMS Kôkyûroku, (937), 75 - 84

Presentations

  • ウェーブレットの逆変換公式と関連する話題

    MORITOH Shinya

    広島微分方程式研究会, Oct. 2017, 広島大学

  • ウェーブレットの逆変換公式について

    MORITOH Shinya

    2017 日本数学会 秋季総合分科会, Sep. 2017

  • Some variations on wavelet reconstruction formulae

    MORITOH Shinya; Shinya Moritoh

    Harmonic Analysis and its Applications in Tokyo 2017, Aug. 2017, 日本大学

  • フーリエ,ウェーブレット,及びラドン変換を用いた解析学

    MORITOH Shinya

    上智大学数学談話会, Jul. 2017, 上智大学

  • Comparison of integral and discrete Ostrowski's inequalities

    MORITOH Shinya; Shinya Moritoh

    Harmonic Analysis and its Applications in Beijing 2016, Sep. 2016, 中国

  • A limiting case of the Arino-Muckenhoupt inequality

    MORITOH Shinya; Shinya MORITOH

    Seminar on Function Spaces, Friedrich-Schiller University, Dec. 2015, ドイツ

  • オストロフスキーの不等式と幾つかの例_x0001_

    MORITOH Shinya

    2015 日本数学会 年会, Mar. 2015, 明治大学

  • Detection of singularities in wavelet and ridgelet analyses

    MORITOH Shinya; Shinya MORITOH

    RIMS Symposium on "Several aspects of microlocal analysis", Oct. 2014

  • オストロフスキーの不等式とその離散化

    MORITOH Shinya

    2014 日本数学会 秋季総合分科会, Sep. 2014, 広島大学

  • Some roles of function spaces in wavelet theory\n-- detection of singularities --

    MORITOH Shinya; Shinya MORITOH

    Workshop on Infinite Dimensional Analysis Buenos Aires 2014, Jul. 2014, アルゼンチン

  • Two-microlocal spaces and ridgelets: detection of line singularities

    MORITOH Shinya

    代数解析学と局所凸空間, Feb. 2014, 日本大学

  • Microlocal Besov spaces and dominating mixed smoothness

    MORITOH Shinya

    2013 日本数学会 秋季総合分科会, Sep. 2013, 愛媛大学

  • ウェーブレット解析30年

    MORITOH Shinya

    湧源クラブ関西夏の地方会2013, Aug. 2013

  • Besov-Triebel-Lizorkin 空間に類似した函数空間の非等方化について

    MORITOH Shinya

    2013 日本数学会 年会, Mar. 2013, 京都大学

  • フーリエやウェーブレットを用いた解析

    MORITOH Shinya

    湧源クラブ 関西クリスマス会, Dec. 2012

  • Szemeredi の定理に関する概観

    MORITOH Shinya

    調和解析セミナー, Dec. 2012, 東京大学

  • Smoothness of functions and the Weyl-Stone-Titchmarsh-Kodaira theorem

    MORITOH Shinya; Shinya MORITOH

    International Workshop on Functional Analysis, Oct. 2012, ルーマニア

  • Mulholland's inequality revisited

    MORITOH Shinya

    2012 日本数学会 秋季総合分科会, Sep. 2012, 九州大学

  • Embeddings of Bessel-potential spaces, and Lorentz?Karamata spaces

    MORITOH Shinya

    2012 日本数学会 年会, Mar. 2012, 東京理科大学

  • フーリエ級数論に於けるギブス現象についての概観

    MORITOH Shinya

    調和解析セミナー, Dec. 2011, 大阪大学

  • Smoothness of functions and the Weyl-Stone-Titchmarsh-Kodaira theorem

    MORITOH Shinya; Shinya MORITOH

    Harmonic Analysis and its Applications at Nara 2011, Nov. 2011, 日本 国際奈良学セミナーハウス

  • Embeddings of Bessel-potential spaces, and Lorentz-Karamata spaces

    MORITOH Shinya

    実解析学シンポジウム 2011, Nov. 2011, 信州大学

  • ソボレフ型の埋蔵定理とロレンツ・カラマタ空間

    MORITOH Shinya

    ハーディー空間などに関する最近の研究について, Sep. 2011, 東京大学

  • 函数の滑らかさと固有函数展開

    MORITOH Shinya

    2011 日本数学会 秋季総合分科会, Sep. 2011

  • 函数の滑らかさと固有函数展開

    MORITOH Shinya

    2011 日本数学会 年会, Mar. 2011

  • Function spaces and convergence of Fourier series

    MORITOH Shinya; Shinya MORITOH

    Seminar on Function Spaces, Friedrich-Schiller University, Dec. 2010, ドイツ

  • Marcinkiewicz Centenary Conference から幾つかの話題 --- Kerman, Sinnamon らの話題 ---

    MORITOH Shinya

    調和解析セミナー, Dec. 2010, 日本大学

  • Radon transform and its application

    MORITOH Shinya

    実解析学シンポジウム 2010, Nov. 2010, 九州工業大学

  • リジレット変換とその応用

    MORITOH Shinya

    Nagoya DE Seminar, 名大微分方程式セミナー, Nov. 2010, 名古屋大学

  • An integral representation formula for potentials, \nembeddings of Bessel-potential spaces, and Lorentz-Karamata spaces

    MORITOH Shinya; Shinya MORITOH

    School on Nonlinear Analysis, Function Spaces and Applications 9, Sep. 2010, チェコ

  • Marcinkiewicz 型の補間定理に関連する不等式

    MORITOH Shinya

    2010 日本数学会 秋季総合分科会, Sep. 2010

  • Some analogues of the Komatsu interpolation theorem of\nMarcinkiewicz type

    MORITOH Shinya; Shinya MORITOH

    The J\'ozef Marcinkiewicz Centenary Conference, Jun. 2010, ポーランド

  • 対数的ポテンシャルに対する積分表示とベッセル・ポテンシャル空間の埋め込み,及びロレンツ・カラマタ空間

    MORITOH Shinya

    2010 日本数学会 年会, Mar. 2010

  • Two-microlocal analysis の新たな展開に向けて

    森藤紳哉

    RIMS 共同研究「関数空間論とその周辺」, Dec. 2019

  • Two-microlocal estimates in wavelet theory and related function spaces

    森藤紳哉

    2019 RIMS 共 同研究「多次元Stockwell 変換と時間周波数解析」, Nov. 2019

  • Some transformations in analysis: Fouirer, wavelet, and Radon

    森藤紳哉

    上智大学談話会, Jul. 2017

Association Memberships

  • 日本数学会

Academic Contribution

  • International Journal of Wavelet, Multiresolution and Information Processing, Peer review etc, Feb. 2021
  • 国際数理科学協会, Peer review etc, Feb. 2021
  • Osaka Journal of Mathematics, Peer review etc, Jul. 2020


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.