Refereed, PROCEEDINGS OF THE FIFTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, VSP BV, Wavelet transforms in R(n) - Wave front sets and Besov, Triebel-Lizorkin spaces, S. MORITOH, 1995, 257, 265, International conference proceedings
Refereed, TOHOKU MATHEMATICAL JOURNAL, TOHOKU UNIVERSITY MATHEMATICAL INSTITUTE, Wavelet transforms in Euclidean spaces - Their relation with wave front sets and Besov, Triebel-Lizorkin spaces, S. Moritoh, We define a class of wavelet transforms as a continuous and microlocal version of the Littlewood-Paley decompositions. Hormander's wave front sets as well as the Besov and Triebel-Lizorkin spaces may be characterized in terms of our wavelet transforms., Dec. 1995, 47, 4, 555, 565, Scientific journal
Refereed, New trends in microlocal analysis (Tokyo, 1995), Springer, Tokyo, Wavelet transforms and operators in various function spaces, S.Moritoh, 1997, 59, 68
Refereed, Annual Report of Graduate School of Human Culture, Nara Women's Univ., Nara Women's University, An approach to Marcinkiewicz type interpolation theorem on weighted Lorentz spaces, S.Moritoh; M.Niwa, 2000, 16, 259, 265, Research institution
Refereed, REVISTA MATEMATICA IBEROAMERICANA, UNIVERSIDAD AUTONOMA MADRID, Two-microlocal Besov spaces and wavelets, S Moritoh; T Yamada, We give a characterization of the two-microlocal Besov spaces in terms of the local Besov type conditions. As an easy consequence, we obtain the inclusions between the two-microlocal Besov spaces and the local Besov spaces. These results are natural extensions of those obtained by Jaffard and Meyer, who treated the pointwise Holder regularity in terms of two-microlocal estimates. The Daubechies wavelets play a key role throughout the paper., 2004, 20, 1, 277, 283, Scientific journal
Refereed, Banach and function spaces, Yokohama Publ., Yokohama, Interpolation theorems for block-Lorentz spaces, A.Gogatishvili; S.Moritoh; M.Niwa; T.Sobukawa, 2004, 215, 223, Scientific journal
Refereed, PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, AMER MATHEMATICAL SOC, Interpolation theorem on Lorentz spaces over weighted measure spaces, S Moritoh; M Niwa; T Sobukawa, In 1997 Ferreyra proved that it is impossible to extend the Stein-Weiss theorem in the context of Lorentz spaces. In this paper we obtain an interpolation theorem on Lorentz spaces over weighted measure spaces., 2006, 134, 8, 2329, 2334, Scientific journal
Refereed, CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, CANADIAN MATHEMATICAL SOC, A Further Decay Estimate for the Dziubanski-Hernandez Wavelets, Shinya Moritoh; Kyoko Tomoeda, We give a further decay estimate for the Dziubanski-Hernandez wavelets that are band-limited and have subexponential decay. This is done by constructing an appropriate bell function and using the Paley-Wiener theorem for ulltradifferentiable functions., Mar. 2010, 53, 1, 133, 139, Scientific journal, 10.4153/CMB-2010-027-3
Refereed, PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, ROYAL SOC EDINBURGH, An integral representation formula for logarithmic potentials and embeddings of Bessel-potential spaces, Shinya Moritoh; Yumi Tanaka, We give an integral representation formula for logarithmic Riesz potentials. This plays an essential role in proving the sharpness of the embeddings of Bessel-potential spaces, which have logarithmic exponents both in the smoothness and ill the underlying Lorentz-Zygmund spaces. These results are natural extensions of those obtained by Edmunds, Gurka, Opic and Trebels., 2009, 139, 541, 549, Scientific journal
Refereed, MATHEMATICAL INEQUALITIES & APPLICATIONS, ELEMENT, COMPARISON OF INTEGRAL AND DISCRETE OSTROWSKI'S INEQUALITIES IN THE PLANE, Shinya Moritoh; Yumi Tanaka, A comparison of integral and discrete Ostrowski's inequalities in the plane is considered. An integral inequality is described by Legendre's elliptic integrals. A natural discrete analogue of the inequality is also given. The main point is to find a suitable decomposition of the radius in polar coordinates., Jan. 2015, 18, 1, 125, 132, Scientific journal, 10.7153/mia-18-08
Refereed, RIMS Kokyuroku Bessatsu, Detection of singularities in wavelet and ridgelet analyses, MORITOH Shinya, 2016, B57, 1, 13
Refereed, Annual Report of Graduate School of Human Culture, Nara Women's Univ., Further research on wavelet inversion formula, S.Moritoh; N.Takemoto, Mar. 2018, 33, 107, 111, Research institution
Refereed, Integral Transforms and Special Functions, Expressing Hilbert and Riesz transforms in terms of wavelet transforms, S. Moritoh; N. Takemoto, 2023, 34, 5, 365, 370, Scientific journal
Not Refereed, 数学と物理学の研究交流シンポジウム 報告書, ラドン変換とその応用, 森藤紳哉, 2004, 6, 9, Meeting report
数学, 一般社団法人 日本数学会, 北廣男:オーリッチ空間とその応用,岩波数学叢書,2009, 森藤紳哉, 2012, 64, 4, 415, 420, Book review, 10.11429/sugaku.0644415
数学, 連載 ICM 98,部門別報告 解析学, 森藤紳哉, 1999, 51, 2, 197, 200, Meeting report
Not Refereed, Multidimensional Stockwell transform and timefrequency analysis, RIMS Kôkyûroku, Two-microlocal estimates in wavelet theory and related function spaces, S. Moritoh, Apr. 2021
Not Refereed, 実解析学シンポジウム 2011, Embeddings of Bessel-potential spaces, and Lorentz-Karamata spaces, S.Moritoh, 2012, 43, 32, 36
Not Refereed, 実解析学シンポジウム 2010, Radon transform and its application, S.Moritoh, 2011, 42, 55, 56
Not Refereed, Harmonic analysis and nonlinear partial differential equations (Japanese) (Kyoto, 1999), RIMS Kôkyûroku, FBI transforms and function spaces. (Japanese), S.Moritoh, 2000, 1162, 36, 42
Not Refereed, Harmonic analysis and nonlinear partial differential equations (Japanese) (Kyoto, 1997), RIMS Kôkyûroku, Wavelet transforms and harmonic analysis (on a spherical surface). (Japanese), S.Moritoh, 1998, 1059, 36-39
Not Refereed, Generalized functions and differential equations (Japanese) (Kyoto, 1994), RIMS Kôkyûroku, Wavelet transforms and pseudodifferential operators, S.Moritoh, 1996, 935, 87-102
Not Refereed, Vanishing cycles of $D$-modules and their applications (Japanese) (Kyoto, 1994), RIMS Kôkyûroku, Kyoto University, Microlocal property of pseudodifferential operators in case of wave front sets defined by wavelet transforms, S.Moritoh, 1996, 937, 937, 75, 84
森藤紳哉, RIMS 共同研究「関数空間論とその周辺」, Two-microlocal analysis の新たな展開に向けて, Dec. 2019
森藤紳哉, 2019 RIMS共同研究「多次元Stockwell 変換と時間周波数解析」, Two-microlocal estimates in wavelet theory and related function spaces, Nov. 2019
MORITOH Shinya, 広島微分方程式研究会, ウェーブレットの逆変換公式と関連する話題, Oct. 2017, 広島大学
MORITOH Shinya, 2017 日本数学会 秋季総合分科会, ウェーブレットの逆変換公式について, Sep. 2017, False
MORITOH Shinya; Shinya Moritoh, Harmonic Analysis and its Applications in Tokyo 2017, Some variations on wavelet reconstruction formulae, Aug. 2017, 日本大学, True
森藤紳哉, 上智大学談話会, Some transformations in analysis: Fouirer, wavelet, and Radon, Jul. 2017
MORITOH Shinya, 上智大学数学談話会, フーリエ,ウェーブレット,及びラドン変換を用いた解析学, Jul. 2017, 上智大学
MORITOH Shinya; Shinya Moritoh, Harmonic Analysis and its Applications in Beijing 2016, Comparison of integral and discrete Ostrowski's inequalities, Sep. 2016, 中国, True
MORITOH Shinya; Shinya MORITOH, Seminar on Function Spaces, Friedrich-Schiller University, A limiting case of the Arino-Muckenhoupt inequality, Dec. 2015, ドイツ, True
MORITOH Shinya, 2015 日本数学会 年会, オストロフスキーの不等式と幾つかの例_x0001_, Mar. 2015, 明治大学
MORITOH Shinya; Shinya MORITOH, RIMS Symposium on "Several aspects of microlocal analysis", Detection of singularities in wavelet and ridgelet analyses, Oct. 2014, False
MORITOH Shinya, 2014 日本数学会 秋季総合分科会, オストロフスキーの不等式とその離散化, Sep. 2014, 広島大学, False
MORITOH Shinya; Shinya MORITOH, Workshop on Infinite Dimensional Analysis Buenos Aires 2014, Some roles of function spaces in wavelet theory\n-- detection of singularities --, Jul. 2014, アルゼンチン, True
MORITOH Shinya, 代数解析学と局所凸空間, Two-microlocal spaces and ridgelets: detection of line singularities, Feb. 2014, 日本大学
MORITOH Shinya, 2013 日本数学会 秋季総合分科会, Microlocal Besov spaces and dominating mixed smoothness, Sep. 2013, 愛媛大学, False
MORITOH Shinya, 湧源クラブ関西夏の地方会2013, ウェーブレット解析30年, Aug. 2013
MORITOH Shinya, 2013 日本数学会 年会, Besov-Triebel-Lizorkin 空間に類似した函数空間の非等方化について, Mar. 2013, 京都大学
MORITOH Shinya, 湧源クラブ 関西クリスマス会, フーリエやウェーブレットを用いた解析, Dec. 2012, False
MORITOH Shinya, 調和解析セミナー, Szemeredi の定理に関する概観, Dec. 2012, 東京大学, False
MORITOH Shinya; Shinya MORITOH, International Workshop on Functional Analysis, Smoothness of functions and the Weyl-Stone-Titchmarsh-Kodaira theorem, Oct. 2012, ルーマニア, True
MORITOH Shinya, 2012 日本数学会 秋季総合分科会, Mulholland's inequality revisited, Sep. 2012, 九州大学, False
MORITOH Shinya, 2012 日本数学会 年会, Embeddings of Bessel-potential spaces, and Lorentz?Karamata spaces, Mar. 2012, 東京理科大学, False
MORITOH Shinya, 調和解析セミナー, フーリエ級数論に於けるギブス現象についての概観, Dec. 2011, 大阪大学, False
MORITOH Shinya; Shinya MORITOH, Harmonic Analysis and its Applications at Nara 2011, Smoothness of functions and the Weyl-Stone-Titchmarsh-Kodaira theorem, Nov. 2011, 日本 国際奈良学セミナーハウス, True
MORITOH Shinya, 実解析学シンポジウム 2011, Embeddings of Bessel-potential spaces, and Lorentz-Karamata spaces, Nov. 2011, 信州大学
MORITOH Shinya, ハーディー空間などに関する最近の研究について, ソボレフ型の埋蔵定理とロレンツ・カラマタ空間, Sep. 2011, 東京大学, False
MORITOH Shinya, 2011 日本数学会 秋季総合分科会, 函数の滑らかさと固有函数展開, Sep. 2011, False
MORITOH Shinya, 2011 日本数学会 年会, 函数の滑らかさと固有函数展開, Mar. 2011, False
MORITOH Shinya; Shinya MORITOH, Seminar on Function Spaces, Friedrich-Schiller University, Function spaces and convergence of Fourier series, Dec. 2010, ドイツ, True
MORITOH Shinya, 調和解析セミナー, Marcinkiewicz Centenary Conference から幾つかの話題 --- Kerman, Sinnamon らの話題 ---, Dec. 2010, 日本大学, False
MORITOH Shinya, 実解析学シンポジウム 2010, Radon transform and its application, Nov. 2010, 九州工業大学, False
MORITOH Shinya, Nagoya DE Seminar, 名大微分方程式セミナー, リジレット変換とその応用, Nov. 2010, 名古屋大学, False
MORITOH Shinya; Shinya MORITOH, School on Nonlinear Analysis, Function Spaces and Applications 9, An integral representation formula for potentials, \nembeddings of Bessel-potential spaces, and Lorentz-Karamata spaces, Sep. 2010, チェコ, True
MORITOH Shinya, 2010 日本数学会 秋季総合分科会, Marcinkiewicz 型の補間定理に関連する不等式, Sep. 2010, False
MORITOH Shinya; Shinya MORITOH, The J\'ozef Marcinkiewicz Centenary Conference, Some analogues of the Komatsu interpolation theorem of\nMarcinkiewicz type, Jun. 2010, ポーランド, True
MORITOH Shinya, 2010 日本数学会 年会, 対数的ポテンシャルに対する積分表示とベッセル・ポテンシャル空間の埋め込み,及びロレンツ・カラマタ空間, Mar. 2010, False
近藤恵夢; 森藤紳哉, 第38回調和解析セミナー, 非増加関数に対する重み付きハーディー型の不等式について, 10 Mar. 2023, 09 Mar. 2023, 10 Mar. 2023
森藤紳哉, 代数解析日大研究集会「Recent topics in algebraic analysis」, ロレンツ空間と補間定理:Calder\'on-Hunt-Komatsu の定理と Ovchinnikov の定理を巡って, Invited oral presentation, 09 Mar. 2023, 07 Mar. 2023, 09 Mar. 2023
近藤恵夢; 森藤紳哉, RIMS共同研究「関数空間論とその周辺」, 非増加関数に対する重み付きハーディー型の不等式について, 13 Feb. 2023, 13 Feb. 2023, 15 Feb. 2023
近藤恵夢; 森藤紳哉, 2024 日本数学会 年会, 非増加関数に対する重み付き Hardy の不等式と doubling condition につ いて, 19 Mar. 2024, 17 Mar. 2024, 20 Mar. 2024
森藤紳哉, 39th Harmonic analysis seminar, Carleson's proof of Carleman's inequality and an application to weighted Hardy's inequality, 08 Mar. 2024, 06 Mar. 2024, 08 Mar. 2024
森藤紳哉, 筑波ウェーブレット研究集会, ウェーブレット逆変換を巡って, 12 Nov. 2023, 11 Nov. 2023, 12 Nov. 2023