Researchers Database

OKAMOTO Mayumi

FacultyFaculty Division of Natural Sciences Research Group of Biological Sciences
PositionAssociate Professor
Last Updated :2024/04/15

researchmap

Profile and Settings

  • Name (Japanese)

    Okamoto
  • Name (Kana)

    Mayumi

Research Areas

  • Life sciences, Neuroanatomy and physiology
  • Life sciences, Developmental biology
  • Life sciences, Anatomy
  • Life sciences, Neuroscience - general

Research Experience

  • Jul. 2022, Mar. 2023, Nagoya University, Graduate School of Medicine, 助教
  • Apr. 2019, Jun. 2022, 日本学術振興会, 特別研究員RPD
  • Jun. 2018, Mar. 2019, Nagoya University, Graduate School of Medicine, Project Assistant Professor
  • Jan. 2016, May 2018, Boston University School of Medicine, Postdoctoral Fellow
  • Apr. 2015, Mar. 2017, JSPS, Postdoctoral Fellowships for Research Abroad
  • Jun. 2014, Dec. 2015, Boston Children's Hospital, Harvard Medical School, Postdoctoral Fellow
  • Apr. 2010, May 2014, Nagoya University, Graduate School of Medicine, Project Assistant Professor
  • Apr. 2009, Mar. 2010, Nagoya University, Graduate School of Medicine, Postdoctoral Fellow
  • Apr. 2023, 9999, Nara Women's University, 研究院自然科学系, 准教授 (PI)

Association Memberships

  • 日本発生生物学会
  • 日本解剖学会
  • 日本神経科学学会

Ⅱ.研究活動実績

Published Papers

  • Refereed, Science Advances, American Association for the Advancement of Science (AAAS), Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex, Zhen Li; William A. Tyler; Ella Zeldich; Gabriel Santpere Baró; Mayumi Okamoto; Tianliuyun Gao; Mingfeng Li; Nenad Sestan; Tarik F. Haydar, Mouse and human cortical progenitors share marked similarities; crucial differences instruct species-specific differentiation., 06 Nov. 2020, 6, 45, Scientific journal, 10.1126/sciadv.abd2068
  • Refereed, Cell reports, Dorsal-to-Ventral Cortical Expansion Is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons., Kanako Saito; Mayumi Okamoto; Yuto Watanabe; Namiko Noguchi; Arata Nagasaka; Yuta Nishina; Tomoyasu Shinoda; Akira Sakakibara; Takaki Miyata, Despite recent studies elucidating the molecular mechanisms underlying cortical patterning and map formation, very little is known about how the embryonic pallium expands ventrally to form the future cortex and the nature of the underlying force-generating events. We find that neurons born at embryonic day 10 (E10) in the mouse dorsal pallium ventrally stream until E13, thereby superficially spreading the preplate, and then constitute the subplate from E14. From E11 to E12, the preplate neurons migrate, exerting pulling and pushing forces at the process and the soma, respectively. At E13, they are morphologically heterogeneous, with ∼40% possessing corticofugal axons, which are found to be in tension. Ablation of these E10-born neurons attenuates both deflection of radial glial fibers (by E13) and extension of the cortical plate (by E14), which should occur ventrally, and subsequently shrinks the postnatal neocortical map dorsally. Thus, the preplate stream physically primes neocortical expansion and arealization., 05 Nov. 2019, 29, 6, 1555, 1567, Scientific journal, True, 10.1016/j.celrep.2019.09.075
  • Refereed, Science, American Association for the Advancement of Science, Synaptic transmission from subplate neurons controls radial migration of neocortical neurons, Chiaki Ohtaka-Maruyama; Mayumi Okamoto; Kentaro Endo; Minori Oshima; Noe Kaneko; Kei Yura; Haruo Okado; Takaki Miyata; Nobuaki Maeda, The neocortex exhibits a six-layered structure that is formed by radial migration of excitatory neurons, for which the multipolar-to-bipolar transition of immature migrating multipolar neurons is required. Here, we report that subplate neurons, one of the first neuron types born in the neocortex, manage the multipolar-to-bipolar transition of migrating neurons. By histochemical, imaging, and microarray analyses on the mouse embryonic cortex, we found that subplate neurons extend neurites toward the ventricular side of the subplate and form transient glutamatergic synapses on the multipolar neurons just below the subplate. NMDAR (N-methyl-D-aspartate receptor)-mediated synaptic transmission from subplate neurons to multipolar neurons induces themultipolar-to-bipolar transition, leading to a change inmigration mode from slow multipolar migration to faster radial glial-guided locomotion. Our data suggested that transient synapses formed on early immature neurons regulate radialmigration., 20 Apr. 2018, 360, 6386, 313, 317, Scientific journal, 10.1126/science.aar2866
  • Refereed, Cerebral cortex (New York, N.Y. : 1991), Distinct Neocortical Progenitor Lineages Fine-tune Neuronal Diversity in a Layer-specific Manner., Guillamon-Vivancos T; Tyler WA; Medalla M; Chang WW; Okamoto M; Haydar TF; Luebke JI, Feb. 2018, 10.1093/cercor/bhy019
  • Refereed, NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells, Mayumi Okamoto; Takaki Miyata; Daijiro Konno; Hiroki R. Ueda; Takeya Kasukawa; Mitsuhiro Hashimoto; Fumio Matsuzaki; Ayano Kawaguchi, During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode., Apr. 2016, 7, 11349, Scientific journal, 10.1038/ncomms11349
  • Refereed, FRONTIERS IN CELLULAR NEUROSCIENCE, FRONTIERS MEDIA SA, Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics, Takaki Miyata; Mayumi Okamoto; Tomoyasu Shinoda; Ayano Kawaguchi, The neuroepithelium (NE) or ventricular zone (VZ), from which multiple types of brain cells arise, is pseudostratified. In the NE/VZ, neural progenitor cells are elongated along the apicobasal axis, and their nuclei assume different apicobasal positions. These nuclei move in a cell cycledependent manner, i.e., apicalward during G2 phase and basalward during G1 phase, a process called interkinetic nuclear migration (INM). This review will summarize and discuss several topics: the nature of the INM exhibited by neural progenitor cells, the mechanical difficulties associated with INM in the developing cerebral cortex, the community-level mechanisms underlying collective and efficient INM, the impact on overall brain formation when NE/VZ is overcrowded due to loss of INM, and whether and how neural progenitor INM varies among mammalian species. These discussions will be based on recent findings obtained in live, three-dimensional specimens using quantitative and mechanical approaches. Experiments in which overcrowding was induced in mouse neocortical NE/VZ, as well as comparisons of neocortical INM between mice and ferrets, have revealed that the behavior of NE/VZ cells can be affected by cellular densification. A consideration of the physical aspects in the NE/VZ and the mechanical difficulties associated with high-degree pseudostratification (PS) is important for achieving a better understanding of neocortical development and evolution., Jan. 2015, 8, 473, Scientific journal, 10.3389/fncel.2014.00473
  • Refereed, NEUROSCIENCE RESEARCH, ELSEVIER IRELAND LTD, Ferret-mouse differences in interkinetic nuclear migration and cellular densification in the neocortical ventricular zone, Mayumi Okamoto; Tomoyasu Shinoda; Takumi Kawaue; Arata Nagasaka; Takaki Miyata, The thick outer subventricular zone (OSVZ) is characteristic of the development of human neocortex. How this region originates from the ventricular zone (VZ) is largely unknown. Recently, we showed that over-proliferation-induced acute nuclear densification and thickening of the VZ in neocortical walls of mice, which lack an OSVZ, causes reactive delamination of undifferentiated progenitors and invasion by these cells of basal areas outside the VZ. In this study, we sought to determine how VZ cells behave in non-rodent animals that have an OSVZ. A comparison of mid-embryonic mice and ferrets revealed: (1) the VZ is thicker and more pseudostratified in ferrets. (2) The soma and nuclei of VZ cells were horizontally and apicobasally denser in ferrets. (3) Individual endfeet were also denser on the apical (ventricular) surface in ferrets. (4) In ferrets, apicalward nucleokinesis was less directional, whereas basalward nucleokinesis was more directional; consequently, the nuclear density in the periventricular space (within 16 mu m of the apical surface) was smaller in ferrets than in mice, despite the nuclear densification seen basally in ferrets. These results suggest that species-specific differences in nucleokinesis strategies may have evolved in close association with the magnitudes and patterns of nuclear stratification in the VZ. (C) 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)., Sep. 2014, 86, 88, 95, Scientific journal, 10.1016/j.neures.2014.10.006
  • Refereed, DEVELOPMENT GROWTH & DIFFERENTIATION, WILEY-BLACKWELL, Neurogenin2-d4Venus and Gadd45g-d4Venus transgenic mice: Visualizing mitotic and migratory behaviors of cells committed to the neuronal lineage in the developing mammalian brain, Takumi Kawaue; Ken Sagou; Hiroshi Kiyonari; Kumiko Ota; Mayumi Okamoto; Tomoyasu Shinoda; Ayano Kawaguchi; Takaki Miyata, To achieve highly sensitive and comprehensive assessment of the morphology and dynamics of cells committed to the neuronal lineage in mammalian brain primordia, we generated two transgenic mouse lines expressing a destabilized (d4) Venus controlled by regulatory elements of the Neurogenin2 (Neurog2) or Gadd45g gene. In mid-embryonic neocortical walls, expression of Neurog2-d4Venus mostly overlapped with that of Neurog2 protein, with a slightly (1h) delayed onset. Although Neurog2-d4Venus and Gadd45g-d4Venus mice exhibited very similar labeling patterns in the ventricular zone (VZ), in Gadd45g-d4Venus mice cells could be visualized in more basal areas containing fully differentiated neurons, where Neurog2-d4Venus fluorescence was absent. Time-lapse monitoring revealed that most d4Venus(+) cells in the VZ had processes extending to the apical surface; many of these cells eventually retracted their apical process and migrated basally to the subventricular zone, where neurons, as well as the intermediate neurogenic progenitors that undergo terminal neuron-producing division, could be live-monitored by d4Venus fluorescence. Some d4Venus(+) VZ cells instead underwent nuclear migration to the apical surface, where they divided to generate two d4Venus(+) daughter cells, suggesting that the symmetric terminal division that gives rise to neuron pairs at the apical surface can be reliably live-monitored. Similar lineage-committed cells were observed in other developing neural regions including retina, spinal cord, and cerebellum, as well as in regions of the peripheral nervous system such as dorsal root ganglia. These mouse lines will be useful for elucidating the cellular and molecular mechanisms underlying development of the mammalian nervous system., May 2014, 56, 4, 293, 304, Scientific journal, 10.1111/dgd.12131
  • Refereed, NEURON, CELL PRESS, Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex, Takashi Namba; Yuji Kibe; Yasuhiro Funahashi; Shinichi Nakamuta; Tetsuya Takano; Takuji Ueno; Akiko Shimada; Sachi Kozawa; Mayumi Okamoto; Yasushi Shimoda; Kanako Oda; Yoshino Wada; Tomoyuki Masuda; Akira Sakakibara; Michihiro Igarashi; Takaki Miyata; Catherine Faivre-Sarrailh; Kosei Takeuchi; Kozo Kaibuchi, The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1., Feb. 2014, 81, 4, 814, 829, Scientific journal, 10.1016/j.neuron.2013.12.015
  • Refereed, NATURE NEUROSCIENCE, NATURE PUBLISHING GROUP, TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding, Mayumi Okamoto; Takashi Namba; Tomoyasu Shinoda; Takefumi Kondo; Tadashi Watanabe; Yasuhiro Inoue; Kosei Takeuchi; Yukiko Enomoto; Kumiko Ota; Kanako Oda; Yoshino Wada; Ken Sagou; Kanako Saito; Akira Sakakibara; Ayano Kawaguchi; Kazunori Nakajima; Taiji Adachi; Toshihiko Fujimori; Masahiro Ueda; Shigeo Hayashi; Kozo Kaibuchi; Takaki Miyata, Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis., Nov. 2013, 16, 11, 1556, 1566, Scientific journal, 10.1038/nn.3525
  • Seibutsu Butsuri, The Biophysical Society of Japan General Incorporated Association, 2SEP-01 Collective nuclear migration of neural progenitors : mechanism and significance(2SEP Exploring mechanisms of emerging order in multicellular systems : Cross-talk between moving cells and microenvironment,Symposium,The 51th Annual Meeting of the Biophysical Society of Japan), Miyata Takaki; Okamoto Mayumi, 2013, 53, 1, S99, 10.2142/biophys.53.S99_6
  • Refereed, BIOLOGY OPEN, COMPANY OF BIOLOGISTS LTD, Lhx1 in the proximal region of the optic vesicle permits neural retina development in the chicken, Takumi Kawaue; Mayumi Okamoto; Akane Matsuyo; Junji Inoue; Yuhki Ueda; Sayuri Tomonari; Sumihare Noji; Hideyo Ohuchi, How the eye forms has been one of the fundamental issues in developmental biology. The retinal anlage first appears as the optic vesicle (OV) evaginating from the forebrain. Subsequently, its distal portion invaginates to form the two-walled optic cup, which develops into the outer pigmented and inner neurosensory layers of the retina. Recent work has shown that this optic-cup morphogenesis proceeds as a self-organizing activity without any extrinsic molecules. However, intrinsic factors that regulate this process have not been elucidated. Here we show that a LIM-homeobox gene, Lhx1, normally expressed in the proximal region of the nascent OV, induces a second neurosensory retina formation from the outer pigmented retina when overexpressed in the chicken OV. Lhx2, another LIM-homeobox gene supposed to be involved in early OV formation, could not substitute this function of Lhx1, while Lhx5, closely related to Lhx1, could replace it. Conversely, knockdown of Lhx1 expression by RNA interference resulted in the formation of a small or pigmented vesicle. These results suggest that the proximal region demarcated by Lhx1 expression permits OV development, eventually dividing the two retinal domains. (C) 2012. Published by The Company of Biologists Ltd., Nov. 2012, 1, 11, 1083, 1093, Scientific journal, 10.1242/bio.20121396
  • Refereed, NEURAL DEVELOPMENT, BIOMED CENTRAL LTD, Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum, Takaki Miyata; Yuichi Ono; Mayumi Okamoto; Makoto Masaoka; Akira Sakakibara; Ayano Kawaguchi; Mitsuhiro Hashimoto; Masaharu Ogawa, Background: Cerebellar corticogenesis begins with the assembly of Purkinje cells into the Purkinje plate (PP) by embryonic day 14.5 (E14.5) in mice. Although the dependence of PP formation on the secreted protein Reelin is well known and a prevailing model suggests that Purkinje cells migrate along the 'radial glial' fibers connecting the ventricular and pial surfaces, it is not clear how Purkinje cells behave in response to Reelin to initiate the PP. Furthermore, it is not known what nascent Purkinje cells look like in vivo. When and how Purkinje cells start axonogenesis must also be elucidated. Results: We show that Purkinje cells generated on E10.5 in the posterior periventricular region of the lateral cerebellum migrate tangentially, after only transiently migrating radially, towards the anterior, exhibiting an elongated morphology consistent with axonogenesis at E12.5. After their somata reach the outer/dorsal region by E13.5, they change 'posture' by E14.5 through remodeling of non-axon (dendrite-like) processes and a switchback-like mode of somal movement towards a superficial Reelin-rich zone, while their axon-like fibers remain relatively deep, which demarcates the somata-packed portion as a plate. In reeler cerebella, the early born posterior lateral Purkinje cells are initially normal during migration with anteriorly extended axon-like fibers until E13.5, but then fail to form the PP due to lack of the posture-change step. Conclusions: Previously unknown behaviors are revealed for a subset of Purkinje cells born early in the posteior lateral cerebellum: tangential migration; early axonogenesis; and Reelin-dependent reorientation initiating PP formation. This study provides a solid basis for further elucidation of Reelin's function and the mechanisms underlying the cerebellar corticogenesis, and will contribute to the understanding of how polarization of individual cells drives overall brain morphogenesis., Sep. 2010, 5, 23, Scientific journal, 10.1186/1749-8104-5-23
  • Refereed, GENE EXPRESSION PATTERNS, ELSEVIER SCIENCE BV, Subtype-specific expression of Fgf19 during horizontal cell development of the chicken retina, Mayumi Okamoto; Takaaki Bito; Sumihare Noji; Hideyo Ohuchi, The mechanisms underlying retinal cell diversification are crucial to proper neural development. Fibroblast growth factor 19 (Fgf19) is expressed by developing horizontal cells (HCs) in the chicken retina. Although there are two major HC subtypes, axon-bearing and axon-less, the precise subtype expressing Fgf19 remains uncertain. Here we characterize Fgf19-expressing cells by co-labeling with antibodies against Lim1 (LIM homeodomain 1, or Lhx1), Islet1, and Prox1 (prospero-related homeobox 1) which are axon-bearing HC, axon-less HC, and pan-HC markers, respectively. We found that a subset of Fgr19-expressing cells was positive for Prox1 and Lim1 in the vitread neuroepithelium at embryonic day 4 (E4). By E9, the majority of Fgf19-expressing cells became positive for Prox1 and Lim1 prior to arrival at the prospective HC layer. In contrast, Fgf19-expressing cells did not overlap with the Islet1-positive population at any stage examined. These results suggest that Fgf19 is expressed by the early migratory horizontal precursors, and later by the presumptive axon-bearing HCs. (C) 2009 Elsevier B.V. All rights reserved., Jun. 2009, 9, 5, 306, 313, Scientific journal, 10.1016/j.gep.2009.02.007
  • Refereed, DEVELOPMENT GROWTH & DIFFERENTIATION, BLACKWELL PUBLISHING, Introduction of silencing-inducing transgene against Fgf19 does not affect expression of Tbx5 and beta 3-tubulin in the developing chicken retina, Mayumi Okamoto; Sayuri Tomonari; Yuki Naito; Kaoru Saigo; Sumihare Noji; Kumiko Ui-Tei; Hideyo Ohuchi, Fgf19 is known to be expressed in the developing chicken eye but its functions during retinal development have remained elusive. Since Fgf19 is expressed in the dorsal portion of the optic cup, it is intriguing to know whether FGF19 is required for expression of dorso-ventral morphogenetic genes in the eye. To clarify this, expression patterns of Tbx5 and Vax were examined in the developing eye after in ovo RNA interference targeted against Fgf19. Quantitative polymerase chain reaction (PCR) analysis showed that the short-hairpin RNAs (shRNAs) targeted against Fgf19 could reduce its expression in the eye to less than 50% of a relative amount of mRNA, compared with contralateral or untreated control eyes. However, no obvious alteration in expression domains of Tbx5 or Vax was observed. Misexpression of Tbx5 or Tbx5-RNAi did not alter the Fgf19 expression either. Furthermore, although Fgf19 is expressed in the central retina before neurogenesis occurs, beta 3-tubulin, a marker for early retinal differentiation was still detected in the central retina after knockdown of Fgf19. Thus, knockdown of Fgf19 supports no obvious regulations between Fgf19 and Tbx5, or exhibits no phenotypes that perturb early retinal differentiation., Apr. 2008, 50, 3, 159, 168, Scientific journal, 10.1111/j.1440-169x.2008.00996.x
  • Refereed, DEVELOPMENT GROWTH & DIFFERENTIATION, BLACKWELL PUBLISHING ASIA, FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo, H Kurose; M Okamoto; M Shimizu; T Bito; C Marcelle; S Noji; H Ohuchi, The fibroblast growth factor (FGF) family is known to be involved in vertebrate eye development. However, distinct roles of individual FGF members during eye development remain largely elusive. Here, we show a detailed expression pattern of Fgf19 in chick lens development. Fgf19 expression initiated in the forebrain, and then became restricted to the distal portion of the optic vesicle abutting the future lens placode, where FGF receptor 4 (Fgfr4), a receptor for FGF19, was expressed. Fgf8, a positive regulator for L-Maf, was expressed in a portion of the optic vesicle. To examine the role of FGF19 signaling during early eye development, Fgf19 was misexpressed near the presumptive lens ectoderm; however, no alteration in the expression of lens marker genes was observed. Conversely, a secreted form of FGFR4 was misexpressed to inhibit an FGF19 signal, resulting in the induction of L-Maf expression. To further define the relationship between L-Maf and Fgf19, L-Maf misexpression was performed, resulting in ectopic induction of Fgf19 expression by Hamburger and Hamilton's stage 12/13. Furthermore, misexpression of Fgf8 induced Fgf19 expression in addition to L-Maf. These results suggest that FGF19-FGFR4 signaling plays a role in early lens development in collaboration with FGF8 signaling and L-Maf transcriptional system., May 2005, 47, 4, 213, 223, Scientific journal, 10.1111/j.1440-169X.2005.00795.x

MISC

  • Not Refereed, 日本発生生物学会・日本細胞生物学会合同大会要旨集, 日本発生生物学会・日本細胞生物学会, ニワトリ神経発生時のautotaxinの機能的研究(Functional studies of Autotaxin during chicken neural development), 福井 ひと美; 岡本 麻友美; 山中 瑞恵; 佐伯 智佳子; 尾ノ井 基嘉; 松田 洋尚; 湯藤 嘉文; 田中 将之; 青木 淳賢; 新井 洋由; 野地 澄晴; 大内 淑代, May 2007, 40回・59回, 104, 104
  • 日本生化学会大会(Web), サブプレートニューロンのマウス大脳皮質形成期における新規の機能, 丸山千秋; 岡本麻友美; 岡戸晴生; 宮田卓樹; 前田信明, 2015, 88th
  • 日本分子生物学会年会プログラム・要旨集(Web), 発生期サブプレートニューロンの神経活動は新生ニューロンの放射状移動に重要な役割をしている, 丸山(大高)千秋; 岡本麻友美; 岡戸晴生; 宮田卓樹; 前田信明, 2014, 37th
  • 日本分子生物学会年会プログラム・要旨集(Web), 発生期大脳皮質の神経細胞移動におけるサブプレート層の役割, 丸山千秋; 岡本麻友美; 岡戸晴生; 宮田卓樹; 前田信明, 2013, 36th

Books etc

  • ブレインサイエンス・レビュー 2022 大脳組織形成における神経前駆細胞の形態の役割と核移動の意義, アドスリー,丸善出版 (発売), 岡本 麻友美, Apr. 2022, ix, 282p, 9784910513065
  • 発生過程の大脳神経前駆細胞が渋滞を回避するメカニズムの解明, 神経科学ニュース, 岡本麻友美, 2014, Not Refereed
  • 神経前駆細胞の空間的安寧を支えるヘテロ物流, 細胞工学, 岡本麻友美; 篠田友靖; 宮田卓樹, 2014, Not Refereed
  • 脳形成を下支えする神経前駆細胞の核移動, 生体の科学, 宮田卓樹; 岡本麻友美, 2014, Not Refereed
  • 神経幹細胞の長く伸びた形態は核の移動を効率化し混雑を防ぐことにより脳の組織づくりを下支えしている, ライフサイエンス新着論文レビュー, 岡本麻友美; 宮田卓樹, 2013, Not Refereed

Presentations

  • Public symposium

Awards

  • Research Award 2013 in Nagoya University Graduate School of Medicine, Mayumi Okamoto, 2013

Research Projects

  • 2023, 2025, Principal investigator
  • 基盤研究(B), Apr. 2022, Mar. 2026, 22H02794, Principal investigator, メカノセンサーチャネルの機能を基盤とした神経前駆細胞の運命制御メカニズムの解明, 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 名古屋大学, 17550000, 13500000, 4050000, kaken
  • 学術変革領域研究(B), Aug. 2021, Mar. 2024, 21H05125, Coinvestigator, 脳脊髄液の産生組織におけるメカノセンシング動態の解明, 野々村 恵子; 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 学術変革領域研究(B), 33670000, 25900000, 7770000, kaken
  • 基盤研究(B), Apr. 2020, Mar. 2024, 20H03413, Coinvestigator, 異所性灰白質病態と脳進化に関わる脳室下帯の形成メカニズムの解明, 川口 綾乃; 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 基盤研究(B), 名古屋大学, 17420000, 13400000, 4020000, 中枢神経系が正常な生理的機能を果たすためには正しく形成された脳組織構造が必要である。本研究は大脳発生における脳室下帯(SVZ)の形成に注目し、幼若ニューロンがSVZ内で自身よりも早生まれのニューロン集団内を移動しつつ、適切なタイミングで皮質板へ侵入開始する機構と、ヒトやフェレットなど脳回を有する生物種の厚いSVZ形成をもたらす機構の解明を目指している。 本年度は、厚いSVZ形成に貢献する外放射状グリア (outer radial glia, oRG) の誕生数を制御する候補分子に注目した実験を中心に行った。oRGの誕生数は胎生初期から中期にかけて増加するため、このタイミングで発現増加する転写因子はその候補となる。この仮説を検討するため、in vivoエレクトロポレーション法を用いて大脳原基にこれらを強制発現させたところ、脳室面よりも外側で分裂する前駆細胞が増加した。このとき3次元的な分裂軸測定によって、脳室面で分裂する前駆細胞の分裂方向が変化していることを確認した。さらに脳原基スライス培養のライブイメージングで、oRG様の細胞が誕生する分裂パターンが増加していることが観察された。興味深いことに、このときの前駆細胞は、代表者らが発見報告したoRG誕生の実行役分子Lzts1強制発現の際に観察された特徴的な細胞挙動に良く似た挙動を示していた。これらのgain-of-functionの実験に加え、これまでに作成できていた変異マウスでの表現型解析も併行して行い、loss-of-functionの状況下での分裂位置の変化の有無について検討を行った。これらの研究成果をまとめ、研究集会で発表し意見交換を行った。, kaken
  • 新学術領域研究(研究領域提案型), Apr. 2020, Mar. 2022, 20H05031, Principal investigator, 物理的な力が生み出す神経前駆細胞ダイバーシティーとその原理の解明, 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 名古屋大学, 6240000, 4800000, 1440000, kaken
  • 特別研究員奨励費, Apr. 2019, Mar. 2022, 19J40246, 脳のサイズや形に寄与する神経前駆細胞の動態制御機構の解明, 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 特別研究員奨励費, 名古屋大学, 4420000, 3400000, 1020000, 発生過程の大脳では、動物種によってそれぞれ、神経前駆細胞から決められた数、種類のニューロンが決められた時期に正しく作られ、最終的にサイズや形の異なる脳を形成する。ヒトを含む霊長類などにおいて見られる脳のサイズの拡大や形の複雑化が、どのように制御されているのかという問いは、多くの研究者が注目している重要なテーマの一つであるが、その全貌は明らかにされていない。 本研究では、動物種間での脳のサイズや形の違いに寄与した分子メカニズムを明らかにするために、マウスに加えて、サイズや形が異なるフェレットの大脳を対象として、(1) タイムラプスイメージングなどを用いた組織レベルでの解析と、(2)トランスクリプトーム解析を用いた分子レベルでの解析を組み合わせ、力学的観点から、神経前駆細胞の細胞産生能や動態がどのように規定されているのか、それらの違いを生み出す制御機構の解明を目的としている。 これまでに、大脳発生過程において発現している機械受容チャネルの機能解析を行った。その一つである、Piezo1に着目した機能解析実験から、Piezo1による力の感知が、神経前駆細胞の細胞産生パターンに影響を与えることを見出した。そして、その結果、マウスにおいてヒトやフェレットが持つようなシワ様構造を誘導することに成功した。今後、マウスとフェレットの脳組織における力学的状態の違いや、Piezo1を介した力の感知の違いについて、さらに詳細に解析したい。, kaken
  • 基盤研究(C), Apr. 2019, Mar. 2022, 19K06920, 大脳発生における力の役割:神経前駆細胞の動態・運命とその分子機構の解明, 岡本 麻友美, 日本学術振興会, 科学研究費助成事業 基盤研究(C), 名古屋大学, 4420000, 3400000, 1020000, 発生過程の大脳では、神経前駆細胞から決められた時期に決められた数と種類の細胞が生み出されることで、機能的な脳組織を形成する。神経前駆細胞において、産生する細胞の数や種類がどのように制御されているのかという問いは、神経発生分野において大きなテーマの一つであるが、そのメカニズムはまだ完全に理解されていない。 本研究では、力学的視点から、神経前駆細胞の動態や運命の制御機構を理解することを目標として、(1)発生過程の大脳組織にはどのような力が存在しているのか?(2)物理的な“力”が神経前駆細胞の動態や運命をどのように制御しているのか?(3)神経前駆細胞の動態や運命を力学的に制御する分子メカニズムは何か?を明らかにすることを目的としている。 現在までに、力を与えた組織とそのコントロールから単離した神経前駆細胞における比較トランスクリプトーム解析を行い、多数の発現変動遺伝子のリストを得た。各遺伝子群の詳細な解析は現在進行中である。 また、機械受容チャネルの一つであるPiezo1に着目した機能解析から、Piezo1による力の感知が、神経前駆細胞の細胞産生パターンに影響することを見出した。Piezo1による力の感知により、どのような遺伝子発現変化を経て、神経前駆細胞の産生パターンに影響したかは、現在調査中であるが、本研究から、発生過程の大脳組織に存在する力が、Piezo1による力の感知を経て、神経前駆細胞の運命を制御している可能性が考えられた。今後、Piezo1が介する大脳発生メカニズムについてさらに詳細に解析したい。, kaken
  • Jan. 2017, Mar. 2018, Principal investigator, 大脳発生過程において細胞の運命を規定する神経前駆細胞の不均一性の解明, 岡本麻友美, かなえ医薬振興財団, 第45回海外留学助成金, 0, 0, 0, Competitive research funding
  • Apr. 2015, Mar. 2017, 大脳発生期のGPCRを介した細胞と周囲環境の相互作用による細胞動態制御機構の解明, 岡本 麻友美, 日本学術振興会, 海外特別研究員
  • Apr. 2011, Mar. 2012, Principal investigator, 発生時期特異的に変化する神経幹細胞の分裂パターンを制御しているメカニズムの解析, 岡本麻友美, 文部科学省, 科学研究費補助金(若手研究(B)), 0, 0, 0, Competitive research funding
  • Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), 01 Apr. 2010, 31 Mar. 2016, 22111006, Neurogenesis regulated through three-dimensional cellular movement and cell-cell interactions within the neuroepithelium, Miyata Takaki; KAWAGUCHI Ayano; SAKAKIBARA Akira; HASHIMOTO Mitsuhiro; SHINODA Tomoyasu; OKAMOTO Mayumi, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Nagoya University, 190190000, 146300000, 43890000, Belonging to the "Cross-talk between moving cells and microenvironment as a basis of emerging order in multicellular system", this research project studied how movements of neural progenitor cells are coordinated to establish the safe and efficient "neurogenesis" (i.e. production of neurons to build a brain structure) without suffering from a "traffic jam" of cells in a narrow tissue-developing space. Using new techniques such as live imaging of all cells, quantitative analysis on trajectories of moving cells, and mechanical experiments, we found that cells are cleverly moving in a manner similar to "staggered commuting" (i.e. one cell goes first then the other follows). If this "crowd control" method does not work during development, brain structure cannot form normally (Nature Neuroscience, 2013). We further demonstrated brain cells' migration strategy is different between mice and ferret, suggesting that control of cellular movements may underlie brain evolution., kaken
  • Grant-in-Aid for Scientific Research (C), 01 Apr. 2013, 31 Mar. 2017, 25430035, Mechanisms controlling temporal identity and departure of nerual progenitor cells during cerebral development, Kawaguchi Ayano; OKAMOTO Mayumi; MIYATA Takaki; MATSUZAKI Fumio, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Nagoya University, 5070000, 3900000, 1170000, This study aimed to reveal the mechanisms regulating (1) the departure of differentiating cells from the apical surface and (2) transition of temporal identity of the neural stem cell during mammalian cerebral development. We promoted the research based on the single-cell transcriptome profiles. Based on the results from various functional experiments, we identified one molecule which plays a key role in cellular delamination from the apical surface, and also confirmed its characteristic expression pattern. Regarding the temporal identity, we identified "time-axis genes" whose expression changes over time but is independent of differentiation status. The pattern of changes in the expression of such temporal-axis genes is unaffected by cell-cycle arrest, suggesting that the timing mechanisms in neural stem cells function independently of cell-cycle progression., kaken


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.