Warning: Undefined array key "HTTP_ACCEPT_LANGUAGE" in E:\rd_system\apps\Apache24\htdocs\search\index.php on line 12
(Faculty Division of Natural Sciences Research Group of Chemistry)|Researchers' Profile Teacher performance management system

Matsumoto Arimasa

Faculty Division of Natural Sciences Research Group of ChemistryAssociate Professor
Last Updated :2025/06/13

■researchmap

Profile Information

  • Name (Japanese)

    Matsumoto
  • Name (Kana)

    Arimasa

Degree

  • Ph. D, The University of Tokyo

Research Areas

  • Life sciences, Bioorganic chemistry
  • Nanotechnology/Materials, Structural/physical organic chemistry

Research History

  • 2016 - 2017, 東京理科大学理学部応用化学科 嘱託講師
  • 2016 - 2017, Tokyo University of Science, Lecturer
  • 2012 - 2016, 東京理科大学理学部応用化学科 嘱託助教
  • 2012 - 2016, Tokyo University of Science, Assistant Professor
  • 2009 - 2012, 日本学術振興会 特別研究院(DC1)
  • 2009 - 2012, Japan Society for the Promotion of Science, Research Fellowship for Young Scientists

Education

  • 2012, The University of Tokyo, 理学系研究科, 化学専攻, Japan
  • 2012, The University of Tokyo, Graduate School, Division of Science, Department of Chemistry
  • 2009, The University of Tokyo, 理学系研究科, 化学専攻, Japan
  • 2009, The University of Tokyo, Graduate School, Division of Science, Department of Chemistry
  • 2007, The University of Tokyo, Faculty of Science, Department of Chemistry, Japan
  • 2007, The University of Tokyo, Faculty of Science, Department of Chemistry

Professional Memberships

  • 錯体化学会
    Jul. 2018 - Present
  • The Japanese Photochemistry Association
    Nov. 2021
  • 日本化学会 有機結晶部会
    Oct. 2021
  • 日本化学会
  • 有機合成化学協会
  • 近畿化学協会 有機金属部会

■Ⅱ.研究活動実績

Published Papers

  • Refereed, Chem, Elsevier BV, Stable and responsive atropisomerism around a carbon–iodine bond, Shohei Abe; Jun Kikuchi; Arimasa Matsumoto; Naohiko Yoshikai, Apr. 2025, 102527, 102527, Scientific journal, 10.1016/j.chempr.2025.102527
  • Refereed, Angewandte Chemie International Edition, Wiley, Stereoselective Hydroxyallylation of Cyclopropenes with Cyclopropanols via NHC Catalysis of Transient Organozinc Species, Kento Tsukiji; Arimasa Matsumoto; Kazuya Kanemoto; Naohiko Yoshikai, Abstract

    A stereoselective hydroxyallylation reaction of cyclopropenes with cyclopropanols is achieved under zinc‐mediated conditions, affording densely functionalized cyclopropanes with excellent diastereocontrol over three contiguous stereocenters within and outside the cyclopropane ring. A racemic variant of the reaction is synergistically promoted by catalytic N‐heterocyclic carbene (NHC) and organic base, whereas chiral amino alcohol‐derived bifunctional NHC enables a catalytic enantioselective variant. The reaction likely involves the generation of enolized zinc homoenolate via ring‐opening of zinc cyclopropoxide and enolization of the resulting homoenolate, followed by its addition to the cyclopropene as a prochiral allylzinc nucleophile. Our mechanistic investigations highlighted the transient nature of enolized homoenolate, which, once generated from thermodynamically predominant cyclopropoxide, immediately proceeds to allylzincation with cyclopropene. The NHC not only promotes the rate‐determining generation of enolized homoenolate but also engages in the allylzincation process. The resulting cyclopropylzinc species undergoes partial in situ protonation while partially remaining intact, thereby leaving an opportunity for trapping with an external electrophile., 08 Oct. 2024, 63, 46, Scientific journal, 10.1002/anie.202412456
  • Refereed, Tetrahedron, Elsevier BV, Asymmetric autocatalysis with amplification of enantiomeric excess utilizing chiral crystals of achiral o-terphenyls as chiral triggers, Tsuneomi Kawasaki; Daisuke Tateishi; Arimasa Matsumoto; Kenso Soai, Feb. 2024, 152, 133835, 133835, Scientific journal, 10.1016/j.tet.2024.133835
  • Refereed, Chemistry – A European Journal, Wiley, Chiral Dinuclear Eu III , Tb III , and Y III Complexes Supported by P ‐Stereogenic Linear Tetraphosphine Tetraoxide, Tomoaki Tanase; Kanako Nakamae; Yume Okawa; Mami Hamada; Arimasa Matsumoto; Takayuki Nakajima; Takuya Nakashima; Tsuyoshi Kawai, 07 Feb. 2022, 28, 8, Scientific journal, 10.1002/chem.202104060
  • Inorganic chemistry, A Synthetic Model for the Possible FeIV2(μ-O)2 Core of Methane Monooxygenase Intermediate Q Derived from a Structurally Characterized FeIIIFeIV(μ-O)2 Complex., Yuji Mikata; Yuri Aono; Chihiro Yamamoto; Hiromi Nakayama; Arimasa Matsumoto; Fukue Kotegawa; Masafumi Harada; Hajime Katano; Yoshio Kobayashi; Sachiko Yanagisawa; Minoru Kubo; Atsushi Kajiwara; Masahito Kodera, A bis(μ-oxo)diiron(IV,IV) complex as a model for intermediate Q in the methane monooxygenase reaction cycle has been prepared. The precursor complex with a [FeIIIFeIV(μ-O)2] core was fully characterized by X-ray crystallography and other spectroscopic analyses and was converted to the [FeIV2(μ-O)2] complex via electrochemical oxidation at 1000 mV (vs Ag/Ag+) in acetone at 193 K. The UV-vis spectral features, Mössbauer parameters (ΔEQ = 2.079 mm/s and δ = -0.027 mm/s), and EXAFS analysis (Fe-O/N = 1.73/1.96 Å and Fe···Fe = 2.76 Å) support the structure of the low-spin (S = 1, for each Fe) [FeIV2(μ-O)2] core. The rate constants of the hydrogen abstraction reaction from 9,10-dihydroanthracene at 243 K suggest the high reactivity of these synthetic bis(μ-oxo)diiron complexes supported by simple N4 tripodal ligand., 25 Nov. 2021, 61, 2, 786, 790, Scientific journal, True, 10.1021/acs.inorgchem.1c02699
  • Refereed, Chemical Communications, Royal Society of Chemistry (RSC), Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol, Arimasa Matsumoto; Ayame Tanaka; Yoshiyasu Kaimori; Natsuki Hara; Yuji Mikata; Kenso Soai, 2021, 57, 85, 11209, 11212, Scientific journal, 10.1039/d1cc04206h
  • European Journal of Inorganic Chemistry, N,N,N′,N′-Tetrakis(3-isoquinolylmethyl)-2,6-lutidylenediamine (3-isoTQLN): A Fluorescent Zn2+/Cd2+ Dual Sensor as a Hybrid of 2-Quinolyl/1-Isoquionolyl Counterparts TQLN/1-isoTQLN, Yuji Mikata; Ayaka Takekoshi; Minori Kaneda; Shizuka Yonemura; Yuri Aono; Arimasa Matsumoto; Hideo Konno; Shawn C. Burdette, 2021, 2021, 13, 1287, 1296, Scientific journal, 10.1002/ejic.202001171
  • Refereed, Chemical Communications, Royal Society of Chemistry (RSC), Asymmetric autocatalysis triggered by triglycine sulfate with switchable chirality by altering the direction of the applied electric field, Tsuneomi Kawasaki; Yoshiyasu Kaimori; Seiya Shimada; Natsuki Hara; Susumu Sato; Kenta Suzuki; Toru Asahi; Arimasa Matsumoto; Kenso Soai,

    In asymmetric autocatalysis with amplification of ee, molecular chirality of highly enantioenriched organic compounds is controlled by a crystal TGS, whose chirality is switchable by changing the direction of the applied static electric field.

    , 2021, 57, 49, 5999, 6002, Scientific journal, 10.1039/d1cc02162a
  • Chemical Communications, Royal Society of Chemistry (RSC), Chiral approach to investigate mechanism of highly efficient thermally activated delayed fluorescence, Kikuya Hayashi; Arimasa Matsumoto; Shuzo Hirata,

    Cancellation of the Cotton effect depending on vibrations of a chiral orthogonal donor–acceptor structure identifies a mechanism of highly efficient delayed fluorescence.

    , 2021, 57, 14, 1738, 1741, Scientific journal, 10.1039/d0cc08064k
  • Dalton Transactions, Royal Society of Chemistry (RSC), Structure and electrochemical properties of (µ-O)2Mn2(III,III) and (µ-O)2Mn2(III,IV) complexes supported by pyridine-, quinoline-, isoquinoline- and quinoxaline-based tetranitrogen ligands, Yuji Mikata; Yasuko Kuroda; Kyoko Naito; Kana Murakami; Chihiro Yamamoto; Shoko Yabe; Shizuka Yonemura; Arimasa Matsumoto; Hajime Katano,

    Seven new bis(µ-oxo) dimanganese complexes with Mn2(III,III) or Mn2(III,IV) oxidation states were prepared using quinoline- and isoquinoline-based tetraamine ligands. The structures of the ligands include ethylenediamine, trans-1,2-cyclohexanediamine and tripodal amine,...

    , 2021, 50, 12, 4133, 4144, Scientific journal, True, 10.1039/d1dt00184a
  • Inorganica Chimica Acta, Elsevier BV, Conversion of (µ-OH)2Mn2(II,II) complex to (µ-O)2Mn2(III,III) core supported by a quinoxaline-based tetranitrogen ligand, Yuji Mikata; Kana Murakami; Ayaka Ochi; Fumie Nakagaki; Kyoko Naito; Arimasa Matsumoto; Ryoji Mitsuhashi; Masahiro Mikuriya, Sep. 2020, 509, 119688, 119688, Scientific journal, 10.1016/j.ica.2020.119688
  • Refereed, European Journal of Inorganic Chemistry, A Tetrakisquinoline Analog of Calcium Indicator Quin2 for Fluorescence Detection of Cd2+, Yuji Mikata; Minori Kaneda; Marin Tanaka; Satoshi Iwatsuki; Hideo Konno; Arimasa Matsumoto, © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Quin2 (2-{2-[bis(carboxymethyl)amino-5-methylphenoxy]methyl}-6-methoxy-8-[bis(carboxymethyl)amino]quinoline) is a well-known fluorescent Ca2+ indicator. In this study, we replaced its four carboxy groups with quinolines and deleted a methyl group on the benzene ring to afford TQquin2 [N,N,N',N'-tetrakis(2-quinolylmethyl)-8-amino-2-(2-aminophenoxy)methyl-6-methoxyquinoline]. In methanol solution, TQquin2 exhibited fluorescence enhancement toward Cd2+ with excellent selectivity., 08 Mar. 2020, 2020, 9, 757, 763, Scientific journal, 10.1002/ejic.201901323
  • Refereed, Inorganic Chemistry, Switching of Fluorescent Zn/Cd Selectivity in N, N, N′, N′-Tetrakis(6-methoxy-2-quinolylmethyl)-1,2-diphenylethylenediamine by One Asymmetric Carbon Atom Inversion, Yuji Mikata; Kana Nozaki; Marin Tanaka; Hideo Konno; Arimasa Matsumoto; Masaya Kawamura; Shin Ichiro Sato, © 2020 American Chemical Society. A quinoline-based hexadentate ligand, (S,S)-N,N,N′,N′-tetrakis(6-methoxy-2-quinolylmethyl)-1,2-diphenylethylenediamine ((S,S)-6-MeOTQPh2EN), exhibits fluorescence enhancement at 498 nm upon addition of 1 equiv of Zn2+ (IZn/I0 = 12, φZn = 0.047) in aqueous DMF solution (DMF/H2O = 2:1). Addition of 1 equiv of Cd2+ affords a much smaller fluorescence increase at the same wavelength (ICd/I0 = 2.5, ICd/IZn = 21%). The trivalent metal ions such as Al3+, Cr3+, and Fe3+ also exhibit fluorescence enhancement at 395 nm (IAl/I0 = 22, ICr/I0 = 6 and IFe3+/I0 = 13). In contrast, meso-6-MeOTQPh2EN exhibits a Cd2+-selective fluorescence increase at 405 nm in the presence of 1 equiv of metal ion (ICd/I0 = 11.5, φCd = 0.022), while Zn2+ induces a smaller fluorescent response under the same experimental conditions (IZn/I0 = 3.3, IZn/ICd = 29%). In this case, the fluorescence intensities of meso-6-MeOTQPh2EN in the presence of a large amount of Zn2+ and Cd2+ become similar. This diastereomer-dependent, fluorescent metal ion specificity is derived from the Zn2+-specific intramolecular excimer formation in (S,S)-6-MeOTQPh2EN-Zn2+ complex and higher binding affinity of meso-6-MeOTQPh2EN with Cd2+ in comparison to Zn2+. The more conformationally restricted diastereomeric pair, namely, cis- and trans-TQDACHs (cis- and trans-N,N,N′,N′-tetrakis(2-quinolylmethyl)-1,2-diaminocyclohexanes), both exhibit Zn2+-specific fluorescence enhancement because of the high metal binding affinity and intramolecular excimer forming property derived from the rigid DACH backbone., 12 Feb. 2020, Scientific journal, 10.1021/acs.inorgchem.9b03304
  • Refereed, SYMMETRY-BASEL, Role of asymmetric autocatalysis in the elucidation of origins of homochirality of organic compounds, Kenso Soai; Tsuneomi Kawasaki; Arimasa Matsumoto, May 2019, 11, 5, 694, 694, 10.3390/sym11050694
  • Refereed, Chem. Commun., Formation of enantioenriched alkanol with stochastic distribution of enantiomers in the absolute asymmetric synthesis under heterogeneous solid_vapor phase conditions, Yoshiyasu Kaimori; Yui Hiyoshi; Tsuneomi Kawasaki; Arimasa Matsumoto; Kenso Soai, 04 Apr. 2019, 55, 5223, 5226, 10.1039/c9cc01875a
  • Refereed, Organic & Biomolecular Chemistry, Achiral amino acid glycine acts as an origin of homochirality in asymmetric autocatalysis, Arimasa Matsumoto; Hanae Ozaki; Sumeru Tsuchiya; Toru Asahi; Meir Lahav; Tsuneomi Kawasaki; Kenso Soai, 01 Apr. 2019, 17, 4200, 4203, 10.1039/C9OB00345B
  • Refereed, Dalton Transactions, Methoxy-substituted tetrakisquinoline analogs of EGTA and BAPTA for fluorescence detection of Cd 2+, Yuji Mikata; Minori Kaneda; Hideo Konno; Arimasa Matsumoto; Shin Ichiro Sato; Masaya Kawamura; Satoshi Iwatsuki, 2019, 48, 12, 3840, 3852, Scientific journal, 10.1039/c8dt04735a
  • Handbook of Astrobiology, CRC Press, The origin and amplification of chirality leading to biological homochirality, Kenso Soai; Arimasa Matsumoto; Tsuneomi Kawasaki, 07 Dec. 2018, 341, 353, In book
  • Refereed, Inorganic Chemistry, Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands, Yuji Mikata; Risa Ohnishi; Risa Nishijima; Arimasa Matsumoto; Hideo Konno, 02 Jul. 2018, 57, 13, 7724, 7734, Scientific journal, 10.1021/acs.inorgchem.8b00726
  • Refereed, European Journal of Inorganic Chemistry, Carbohydrate-Appended TQNPEN [N,N,N′,N′-Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+, Yuji Mikata; Kana Nozaki; Minori Kaneda; Keiko Yasuda; Masato Aoyama; Satoshi Tamotsu; Arimasa Matsumoto, 29 Jun. 2018, 2018, 24, 2755, 2761, Scientific journal, 10.1002/ejic.201800086
  • Refereed, Tetrahedron, Elsevier Ltd, Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality, Kenso Soai; Tsuneomi Kawasaki; Arimasa Matsumoto, 19 Apr. 2018, 74, 16, 1973, 1990, 10.1016/j.tet.2018.02.040
  • Advances in Asymmetric Autocatalysis and Related Topics, Elsevier, Structural Study of Asymmetric Autocatalysis by X-Ray Crystallography, Arimasa Matsumoto; Tsuneomi Kawasaki; Kenso Soai, 23 May 2017, 183, 202, In book, 10.1016/B978-0-12-812824-4.00010-1
  • Advances in Asymmetric Autocatalysis and Related Topics, Elsevier, Asymmetric Autocatalysis Initiated by Crystal Chirality of Achiral Compounds, Arimasa Matsumoto; Yoshiyasu Kaimori; Tsuneomi Kawasaki; Kenso Soai, 23 May 2017, 337, 355, In book, 10.1016/B978-0-12-812824-4.00018-6
  • Advances in Asymmetric Autocatalysis and Related Topics, Elsevier, Synthesis of Pyrimidine-Terminated Chiral Large Molecular Architectures with Functions of Self-Replication and Self-Improvement by Asymmetric Autocatalysis, Tsuneomi Kawasaki; Arimasa Matsumoto; Itaru Sato; Kenso Soai, 23 May 2017, 149, 165, In book, 10.1016/B978-0-12-812824-4.00008-3
  • Advances in Asymmetric Autocatalysis and Related Topics, Elsevier, Asymmetric Autocatalysis and the Origins of Homochirality of Organic Compounds. An Overview, Kenso Soai; Arimasa Matsumoto; Tsuneomi Kawasaki, 23 May 2017, 1, 30, In book, 10.1016/B978-0-12-812824-4.00001-0
  • Refereed, ORGANIC & BIOMOLECULAR CHEMISTRY, Reversal of the sense of enantioselectivity between 1-and 2-aza[6]helicenes used as chiral inducers of asymmetric autocatalysis, Arimasa Matsumoto; Kento Yonemitsu; Hanae Ozaki; Jiri Misek; Ivo Stary; Irena G. Stara; Kenso Soai, Feb. 2017, 15, 6, 1321, 1324, Scientific journal, 10.1039/c6ob02745h
  • Refereed, STEREOCHEMISTRY AND GLOBAL CONNECTIVITY: THE LEGACY OF ERNEST L ELIEL, VOL 2, Asymmetric Autocatalysis and the Origin of Homochirality, Kenso Soai; Arimasa Matsumoto, 2017, 1258, 27, 47, International conference proceedings
  • Refereed, CHEMISTRY-A EUROPEAN JOURNAL, Point-to-Point Ultra-Remote Asymmetric Control with Flexible Linker, Tsuneomi Kawasaki; Yasuyuki Ishikawa; Yoshihiro Minato; Takashi Otsuka; Shigeru Yonekubo; Itaru Sato; Takanori Shibata; Arimasa Matsumoto; Kenso Soai, Jan. 2017, 23, 2, 282, 285, Scientific journal, 10.1002/chem.201605076
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis, Arimasa Matsumoto; Yoshiyasu Kaimori; Mizuki Uchida; Haruna Omori; Tsuneomi Kawasaki; Kenso Soai, Jan. 2017, 56, 2, 545, 548, Scientific journal, 10.1002/anie.201610099
  • Refereed, ORGANIC & BIOMOLECULAR CHEMISTRY, Can the analyte-triggered asymmetric autocatalytic Soai reaction serve as a universal analytical tool for measuring enantiopurity and assigning absolute configuration?, Christopher J. Welch; Kerstin Zawatzky; Alexey A. Makarov; Satoshi Fujiwara; Arimasa Matsumoto; Kenso Soai, Jan. 2017, 15, 1, 96, 101, Scientific journal, 10.1039/c6ob01939k
  • Refereed, ORGANIC & BIOMOLECULAR CHEMISTRY, Unusual reversal of enantioselectivity in the asymmetric autocatalysis of pyrimidyl alkanol triggered by chiral aromatic alkanols and amines, Arimasa Matusmoto; Satoshi Fujiwara; Yui Hiyoshi; Kerstin Zawatzky; Alexey A. Makarov; Christopher J. Welch; Kenso Soai, Jan. 2017, 15, 3, 555, 558, Scientific journal, 10.1039/c6ob02415g
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Asymmetric Induction by a Nitrogen N-14/N-15 Isotopomer in Conjunction with Asymmetric Autocatalysis, Arimasa Matsumoto; Hanae Ozaki; Shunya Harada; Kyohei Tada; Tomohiro Ayugase; Hitomi Ozawa; Tsuneomi Kawasaki; Kenso Soai, Dec. 2016, 55, 49, 15246, 15249, Scientific journal, 10.1002/anie.201608955
  • Refereed, BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, Elucidation of the Structures of Asymmetric Autocatalyst Based on X-ray Crystallography, Arimasa Matsumoto; Satoshi Fujiwara; Takaaki Abe; Atsushi Hara; Takayuki Tobita; Taisuke Sasagawa; Tsuneomi Kawasaki; Kenso Soai, Oct. 2016, 89, 10, 1170, 1177, Scientific journal, 10.1246/bcsj.20160160
  • Refereed, TETRAHEDRON-ASYMMETRY, Determination of the absolute structure of the chiral crystal consisting of achiral dibutylhydroxytoluene and asymmetric autocatalysis triggered by this chiral crystal, Arimasa Matsumoto; Sora Takeda; Shunya Harada; Kenso Soai, Oct. 2016, 27, 19, 943, 946, Scientific journal, 10.1016/j.tetasy.2016.07.013
  • Refereed, CHEMISTRY LETTERS, Absolute Structure Determination of Chiral Crystals Consisting of Achiral Benzophenone with Single-crystal X-ray Diffraction and Its Correlation with Solid-state Circular Dichroism, Arimasa Matsumoto; Sumeru Tsuchiya; Yuki Hagiwara; Kazuhiko Ishikawa; Hideko Koshima; Toru Asahi; Kenso Soai, May 2016, 45, 5, 526, 528, Scientific journal, 10.1246/cl.160114
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess, Arimasa Matsumoto; Takaaki Abe; Atsushi Hara; Takayuki Tobita; Taisuke Sasagawa; Tsuneomi Kawasaki; Kenso Soai, Dec. 2015, 54, 50, 15218, 15221, Scientific journal, 10.1002/anie.201508036
  • Refereed, CHEMISTRY LETTERS, Asymmetric Autocatalysis Triggered by Chiral Crystal of Achiral Ethylenediamine Sulfate, Arimasa Matsumoto; Takahiro Ide; Yoshiyasu Kaimori; Satoshi Fujiwara; Kenso Soai, May 2015, 44, 5, 688, 690, Scientific journal, 10.1246/cl.150052
  • Refereed, NEW JOURNAL OF CHEMISTRY, Asymmetric induction by retgersite, nickel sulfate hexahydrate, in conjunction with asymmetric autocatalysis, Arimasa Matsumoto; Hirokazu Ozawa; Ayako Inumaru; Kenso Soai, 2015, 39, 9, 6742, 6745, Scientific journal, 10.1039/c5nj01459j
  • Refereed, CHEMICAL COMMUNICATIONS, Helical mesoporous silica as an inorganic heterogeneous chiral trigger for asymmetric autocatalysis with amplification of enantiomeric excess, Tsuneomi Kawasaki; Yuko Araki; Kunihiko Hatase; Kenta Suzuki; Arimasa Matsumoto; Toshiyuki Yokoi; Yoshihiro Kubota; Takashi Tatsumi; Kenso Soai, 2015, 51, 42, 8742, 8744, Scientific journal, 10.1039/c5cc01750e
  • Refereed, NEW JOURNAL OF CHEMISTRY, Asymmetric Induction by Retgersite, Nickel Sulfate Hexahydrate, in Conjunction with Asymmetric Autocatalysis, A. Matsumoto; H. Ozawa; A. Inumaru; K. Soai, 2015, 51, 42, 8742, 8744, 10.1039/C5CC01750E
  • Refereed, ACCOUNTS OF CHEMICAL RESEARCH, Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality, Kenso Soai; Tsuneomi Kawasaki; Arimasa Matsumoto, Dec. 2014, 47, 12, 3643, 3654, 10.1021/ar5003208
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Self-Replication and Amplification of Enantiomeric Excess of Chiral Multifunctionalized Large Molecules by Asymmetric Autocatalysis, Tsuneomi Kawasaki; Mai Nakaoda; Yutaro Takahashi; Yusuke Kanto; Nanako Kuruhara; Kenji Hosoi; Itaru Sato; Arimasa Matsumoto; Kenso Soai, Oct. 2014, 53, 42, 11199, 11202, Scientific journal, 10.1002/anie.201405441
  • Refereed, ORGANIC LETTERS, Asymmetric Autocatalysis Initiated by Finite Single-Wall Carbon Nanotube Molecules with Helical Chirality, Shunpei Hitosugi; Arimasa Matsumoto; Yoshiyasu Kaimori; Ryosuke Iizuka; Kenso Soai; Hiroyuki Isobe, Feb. 2014, 16, 3, 645, 647, Scientific journal, 10.1021/ol403384q
  • Refereed, CHEMICAL RECORD, The Origins of Homochirality Examined by Using Asymmetric Autocatalysis, Kenso Soai; Tsuneomi Kawasaki; Arimasa Matsumoto, Feb. 2014, 14, 1, 70, 83, Scientific journal, 10.1002/tcr.201300028
  • Refereed, Tetrahedron Asymmetry, Enantiodivergent formation of a chiral cytosine crystal by removal of crystal water from an achiral monohydrate crystal under reduced pressure, Hiroko Mineki; Yoshiyasu Kaimori; Tsuneomi Kawasaki; Arimasa Matsumoto; Kenso Soai, 30 Nov. 2013, 24, 21-22, 1365, 1367, Scientific journal, 10.1016/j.tetasy.2013.09.020
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Asymmetric Autocatalysis Induced by Cinnabar: Observation of the Enantioselective Adsorption of a 5-Pyrimidyl Alkanol on the Crystal Surface, Hitoshi Shindo; Yusuke Shirota; Kaori Niki; Tsuneomi Kawasaki; Kenta Suzuki; Yuko Araki; Arimasa Matsumoto; Kenso Soai, Aug. 2013, 52, 35, 9135, 9138, Scientific journal, 10.1002/anie.201304284
  • Refereed, CHEMISTRY LETTERS, Enantioselective Synthesis Induced by the Helical Molecular Arrangement in the Chiral Crystal of Achiral Tris(2-hydroxyethyl) 1,3,5-Benzenetricarboxylate in Conjunction with Asymmetric Autocatalysis, Tsuneomi Kawasaki; Mizuki Uchida; Yoshiyasu Kaimori; Taisuke Sasagawa; Arimasa Matsumoto; Kenso Soai, Jul. 2013, 42, 7, 711, 713, Scientific journal, 10.1246/cl.130185
  • Refereed, Organic and Biomolecular Chemistry, Asymmetric autocatalysis triggered by oxygen isotopically chiral glycerin, Arimasa Matsumoto; Shotaro Oji; Shizuka Takano; Kyohei Tada; Tsuneomi Kawasaki; Kenso Soai, 14 May 2013, 11, 18, 2928, 2931, Scientific journal, 10.1039/c3ob40293b
  • Refereed, Journal of the American Chemical Society, β-Arylation of carboxamides via iron-catalyzed C(sp3)-H bond activation, Rui Shang; Laurean Ilies; Arimasa Matsumoto; Eiichi Nakamura, 24 Apr. 2013, 135, 16, 6030, 6032, Scientific journal, 10.1021/ja402806f
  • Refereed, SYNLETT, Synthesis of Polysubstituted Naphthalenes by Iron-Catalyzed [2+2+2] Annulation of Grignard Reagents with Alkynes, Laurean Ilies; Arimasa Matsumoto; Motoaki Kobayashi; Naohiko Yoshikai; Eiichi Nakamura, Oct. 2012, 23, 16, 2381, 2384, Scientific journal, 10.1055/s-0032-1317077
  • Refereed, ADVANCED SYNTHESIS & CATALYSIS, Iron-Catalyzed Nitrogen-Directed Coupling of Arene and Aryl Bromides Mediated by Metallic Magnesium, Laurean Ilies; Motoaki Kobayashi; Arimasa Matsumoto; Naohiko Yoshikai; Eiichi Nakamura, Mar. 2012, 354, 4, 593, 596, Scientific journal, 10.1002/adsc.201100791
  • Refereed, CHEMICAL COMMUNICATIONS, Asymmetric autocatalysis initiated by achiral nucleic acid base adenine: implications on the origin of homochirality of biomolecules, Hiroko Mineki; Taichi Hanasaki; Arimasa Matsumoto; Tsuneomi Kawasaki; Kenso Soai, 2012, 48, 85, 10538, 10540, Scientific journal, 10.1039/c2cc34928k
  • Refereed, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Phenanthrene Synthesis by Iron-Catalyzed [4+2] Benzannulation between Alkyne and Biaryl or 2-Alkenylphenyl Grignard Reagent, Arimasa Matsumoto; Laurean Ilies; Eiichi Nakamura, May 2011, 133, 17, 6557, 6559, Scientific journal, 10.1021/ja201931e
  • Refereed, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Iron-Catalyzed C-C Bond Formation at alpha-Position of Aliphatic Amines via C-H Bond Activation through 1,5-Hydrogen Transfer, Naohiko Yoshikai; Adam Mieczkowski; Arimasa Matsumoto; Laurean Ilies; Eiichi Nakamura, Apr. 2010, 132, 16, 5568, +, Scientific journal, 10.1021/ja100651t
  • Refereed, SYNLETT, Iron-Catalyzed Direct Arylation of Aryl Pyridines and Imines Using Oxygen as an Oxidant, Naohiko Yoshikai; Arimasa Matsumoto; Jakob Norinder; Eiichi Nakamura, Jan. 2010, 2, 313, 316, Scientific journal, 10.1055/s-0029-1219184
  • Refereed, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Iron-Catalyzed Chemoselective ortho Arylation of Aryl Imines by Directed C-H Bond Activation, Naohiko Yoshikai; Arimasa Matsumoto; Jakob Norinder; Eiichi Nakamura, 2009, 48, 16, 2925, 2928, Scientific journal, 10.1002/anie.200900454
  • Refereed, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Iron-catalyzed direct arylation through directed C-H bond activation, Jakob Norinder; Arimasa Matsumoto; Naohiko Yoshikai; Eiichi Nakamura, May 2008, 130, 18, 5858, +, Scientific journal, 10.1021/ja800818b

MISC

  • Israel Journal of Chemistry, Wiley, Asymmetric Autocatalysis as a Link Between Crystal Chirality and Highly Enantioenriched Organic Compounds, Kenso Soai; Arimasa Matsumoto; Tsuneomi Kawasaki, 09 Aug. 2021, 61, 9-10, 507, 516, Introduction scientific journal, 10.1002/ijch.202100047
  • Not Refereed, 2016, 45, 2, 58, 67
  • Not Refereed, 2015, 66, 133, 138
  • Not Refereed, Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, Society of Synthetic Organic Chemistry, Absolute configuration analysis of organic compounds by single crystal X-ray diffraction, Arimasa Matsumoto, 2015, 73, 7, 755, 761, 10.5059/yukigoseikyokaishi.73.755
  • Not Refereed, Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, Approaches toward the origin of homochirality using the synthetic organic chemistry - Asymmetric autocatalysis with amplification of enantiomeric excess, Tsuneomi Kawasaki; Itaru Sato; Hiroko Mineki; Arimasa Matsumoto; Kenso Soai, 2013, 71, 2, 109, 123, Book review, 10.5059/yukigoseikyokaishi.71.109
  • Not Refereed, CHIMICA OGGI-CHEMISTRY TODAY, Asymmetric autocatalysis Pathway to the biological homochirality, Tsuneomi Kawasaki; Arimasa Matsumoto; Kenso Soai, Sep. 2012, 30, 5, 10, 13, Book review
  • Not Refereed, CHIMICA OGGI-CHEMISTRY TODAY, Asymmetric Autocatalysis. Pathway to The Biological Homochirality, Matsumoto Arimasa; Tsuneomi Kawasaki; Arimasa Matsumoto; Kenso Soai, 2012, 30, 5, 10, 13

Books etc

  • Asymmetric Autocatalysis: The Soai Reaction, Kenso Soai; Tsuneomi Kawasaki; Arimasa Matsumoto, Aug. 2022, 9781839162619
  • 2014, Not Refereed, 9784431549277
  • Iron-Catalyzed Synthesis of Fused Aromatic Compounds via C-H Bond Activation, Springer, 2014, Not Refereed, 9784431549277
  • 2013, Not Refereed, 9784759813739

Presentations

  • Arimasa Matsumoto, Ayame Tanaka, Yuji Mikata, Kenso Soai, Chirality 2019, Mechanistic Study of Asymmetric Autocatalysis Using CD spectrum: Temperature and Concentration Effect on Catalysts Aggregation Structure, 15 Jul. 2019, 14 Jul. 2019 - 17 Jul. 2019
  • 2018
  • 2017
  • 2017
  • Chirality 2017, Chirality Generation by Crystal Phase Transition of Achiral Benzophenone Derivatives, 2017
  • The 67th Confeence of Japan Society of Coordination Chemistry, Achiral to Chiral Crystal Phase Transition of Achiral Achiral to Chiral Crystal Phase Transition of Benzophenone Derivatives and Asymmetric Autocatalysis Initiated by the Crystal Chirality, 2017
  • Poster presentation, 17 Sep. 2023 - 21 Sep. 2023
  • Poster presentation, 24 Jul. 2023 - 27 Jul. 2023

Awards

  • Springer Thesis Prize, 2014
  • 2013, Japan
  • 25th International Synposium on Molecular Chirality (Chirality 2013:ISCD-25) Poster Award, 2013
  • 2012, Japan
  • 2010, Japan

Research Projects

  • Grant-in-Aid for Scientific Research (C), Apr. 2022 - Mar. 2025, 22K05254, Principal investigator, Induction and Control of Photophysical Properties by Asymmetric Crystal Structures, 松本 有正, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Nara Women's University, 4290000, 3300000, 990000, kaken
  • Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Apr. 2020 - Mar. 2022, 20H04674, Principal investigator, Chiral Property Control by Crystal Phase Transition, 松本 有正, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Nara Women's University, 4030000, 3100000, 930000, 分子が右手、左手の関係のように自身の鏡像となり重なり合わない、キラリティーという性質は、生体分子の多くがキラリティーを持つため有機合成分野においてこれまでも重要な研究課題であった。これに対して近年、キラリティーの概念は有機合成や分子のキラリティーだけでなく、集合体やナノ構造が持つキラリティーやキラル物性の応用が注目を集めている。本研究は本来キラリティーを持たないアキラルな分子が結晶化する際に、分子の配向や周期構造にキラリティーが現れる、アキラル化合物のキラル結晶化現象に着目し,結晶構造の持つキラリティーやキラルな結晶構造への分子の取り込みによって,キラリティーを持たない分子によるキラル物性の発現を目指す物である。前年度までの検討によりアキラルなベンゾフェノン誘導体が比較的キラル結晶化を起こしやすいことに着目し,この分子にアミンなどのドナー部位を持たせることでドナーアクセプター型の固体発光分子の合成、結晶化を行い。アキラル分子のみからなるキラルな有機固体発光材料を創出することのに成功している。また今年度の検討では、有機固体分子に対してキラルな光である円偏光を照射することで固体状態での円偏光の吸収特性が可逆に変化するという現象を見いだした。この現象は結晶中での分子の配列のキラリティーが、光という物理的な外部刺激による変化を受けることを示した例であり、そのメカニズムまではまだ明らかにできなかったが、光によるキラリティーのコントロール可能な有機結晶材料という応用上、興味深い発見である。, kaken
  • Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Apr. 2018 - Mar. 2020, 18H04518, Principal investigator, Development of Chirality Controllable Soft Crystal, 松本 有正, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Nara Women's University, 4290000, 3300000, 990000, 結晶構造にも分子と同様に対称心や鏡映面を持たないキラルな結晶が存在する。二酸化ケイ素が右水晶と左水晶を形成するように,アキラル化合物が結晶化によってキラルな構造を形成する場合がある。このアキラル化合物のキラル結晶化現象は,分子不斉の発生,ホモキラリティーの起源などの観点から興味深い現象である事に加え,結晶構造変化によりキラリティーが可変の新たな材料の創成に繋がると期待される。
    本研究は申請者が見出した単結晶のアキラル相からキラル相への結晶相転移によるキラリティーの発現という新現象に基づき,そのメカニズム解明および一般性の検証を行うことで相転移を利用してキラル物性が変化するという新たなソフトクリスタルを創出する事を目的とする。
    前年度までの研究により,アキラルおよびキラルの両多形をもつベンゾフェノン誘導体についてその結晶化条件を精密に精査しアキラル結晶およびキラル結晶を再現性よく作り分ける事や,アキラルな結晶がキラル結晶の接触により,単結晶-単結晶相転移を起こし,キラリティーがアキラル結晶に伝搬することを見出している。本年度の研究ではさらに通常アキラルな結晶構造を与えるフルオロベンゾフェノンなどの分子であっても,他のベンゾフェノン誘導体と共結晶化をさせることで,キラルな結晶多形に誘導あるいは共結晶化させる事に成功している。これらのベンゾフェノン誘導体のいくつかは強いリン光を発する物も見つかっており。この共結晶化によるキラル結晶化と組み合わせることで,キラル結晶とならないアキラルな発光分子であっても円偏光発光特性などキラルな物性を持たせることが可能になると考えられる。, kaken
  • Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Apr. 2017 - Mar. 2019, 17H05384, Principal investigator, Research of Chiral Zinc Alkoxide Complexes for Asymmetric Amplification, 松本 有正, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Nara Women's University, 4940000, 3800000, 1140000, 不斉増幅現象は天然物のホモキラリティーの起源解明につながる科学全般から興味をもたれる現象であり,さらに不斉合成、不斉分割といった有機合成化学へ の応用も期待される重要な現象である。本研究は著しい不斉増幅を引き起こす唯一の不斉自己触媒反応であるピリミジルアルカノールを不斉触媒とするピリミジン-5-カルバルデヒド類へのジイソプロピル亜鉛試薬の付加反応において、亜鉛アルコキシドの配位多量体構造が不斉増幅の鍵になっていることに着目し、その配 位多量体構造をX線結晶構造解析、円二色性(CD)スペクトル、量子化学計算を用いて解明し不斉増幅の鍵となる配位構造を明らかとすることを目的としている。
    前年度までの研究によりこの高い不斉増幅を引き起こす不斉自己触媒であるピリミジルアルカノール亜鉛アルコキシドのCDスペクトルが温度により興味深い変化を引き起こす事を見出している。本年度ではさらにこのCDスペクトルの変化について検討をおこない,濃度や溶媒効果による変化を起こすことを見出した。さらに触媒の構造として考えられるいくつかの会合構造に対して,時間依存型密度汎関数法(TD-DFT法)によるCDスペクトル計算を行い,観測されたスペクトルの変化が触媒の会合状態の平衡の変化による物であることを明らかとした。触媒が会合状態を作る事は不斉増幅のメカニズムの鍵となると考えられており,この溶液中での会合状態挙動を明らかとした本研究は不斉増幅のメカニズム解明に大きな進歩をもたらす物である。またCDスペクトルにより触媒の溶液中での会合状態を明らかとした本研究は不斉反応のメカニズム解明にCDスペクトル測定が有効な分析手法であることを示した初めての例である。, kaken
  • Grant-in-Aid for Scientific Research (B), 01 Apr. 2015 - 31 Mar. 2018, 15H03781, Study on the Origin of Chirality of Chiral Compounds by Using Asymmetric Autocatalysis, Soai Kenso, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Tokyo University of Science, 13780000, 10600000, 3180000, Asymmetric autocatalysis of pyrimidyl alkanol between diisopropylzinc and pyrimidine-5-carbaldehyde is a reaction in which chiral product acts as a chiral catalyst for its own production with amplification of enantiomeric excess (Soai reaction). The origin of chirality of chiral compounds has attracted much attention. We examined the origin of homochirality by using asymmetric autocatalysis. We found the enantiotopic face of achiral inorganic gypsum, nitrogen isotope (15N/14N) chiral diamine, chiral retgersite mineral, and chiral mesoporous silica act as chiral triggers of asymmetric autocatalysis to afford enantioenriched pyrimidyl alkanols with the corresponding absolute configurations with those of chiral triggers. We also elucidated the catalyst structure of asymmetric autocatalysis. We found that the change of temperature reverses of the sense of enantioselectivity of asymmetric autocatalysis using aromatic alkanols and amines as chiral triggers., kaken
  • Grant-in-Aid for Young Scientists (B), 01 Apr. 2014 - 31 Mar. 2017, 26810026, Asymmetric Autocatalysis Induced by Crystal or Surface Chirality of Achiral Compounds, Matsumoto Arimasa, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Tokyo University of Science, 3900000, 3000000, 900000, Some achiral compounds have a chirality in the crystal structure or crystal surface. The main purpose of this study is achieving the asymmetric induction in molecular chirality by using crystal chirality or surface chirality without any chiral compounds.
    In the course of this study, asymmetric induction with chiral crystal of achiral ethylendiamine sulfate, phenol derivatives, and nickel sulfate hexahydrate were achieved by using asymmetric amplification effect of asymmetric autocatalytic reaction.
    Furthermore, asymmetric autocatalysis induced by surface chirality also achieved by using the 2-dimentional surface chirality of achiral gypsum crystal. This is the first example of asymmetric induction of reaction selectivity by using the surface chirality of crystal., kaken
  • Grant-in-Aid for Scientific Research (S), 2008 - 2012, 20225002, The Origins of Chirality and Amplification in Asymmetric Autocatalysis, SOAI Kenso; KAWASAKI Tsuneomi; SHIBATA Takanori; SHINDO Hitoshi; MATSUMOTO Arimasa; TSUKIYAMA Koichi; MIYAMURA Kazuo; SAITO Yukio, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Tokyo University of Science, 206960000, 159200000, 47760000, Biologically related compounds such as L-amino acids are composed of one of the enantiomers. The phenomenon is called biological homochirality, and the origin of homochirality has attracted broad interest. Asymmetric autocatalysis, i.e., Soai reaction, is a reaction in which chiral product acts as a chiral catalyst for its own production. It was found that chiral isotopomers of carbon, hydrogen and oxygen, spontaneous absolute asymmetric synthesis, chiral crystals formed from achiral organic compounds such as nucleic acid base act as chiral initiators of asymmetric autocatalysis. Highly enantioenriched chiral compounds withthe corresponding absolute configurations with those of chiral initiators are obtained., kaken